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The response of big sagebrush (Artemisia tridentata) to interannual

climate variation changes across its range

1.2

ANDREW R. KLEINHESSELINK "2 AND PETER B. ADLER'

' Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main Hill, Logan, Utah 84322 USA

Abstract. Understanding how annual climate variation affects population growth rates across a
species’ range may help us anticipate the effects of climate change on species distribution and abun-
dance. We predict that populations in warmer or wetter parts of a species’ range should respond nega-
tively to periods of above average temperature or precipitation, respectively, whereas populations in
colder or drier areas should respond positively to periods of above average temperature or precipita-
tion. To test this, we estimated the population sensitivity of a common shrub species, big sagebrush
(Artemisia tridentata), to annual climate variation across its range. Our analysis includes 8,175 obser-
vations of year-to-year change in sagebrush cover or production from 131 monitoring sites in western
North America. We coupled these observations with seasonal weather data for each site and analyzed
the effects of spring through fall temperatures and fall through spring accumulated precipitation on
annual changes in sagebrush abundance. Sensitivity to annual temperature variation supported our
hypothesis: years with above average temperatures were beneficial to sagebrush in colder locations and
detrimental to sagebrush in hotter locations. In contrast, sensitivity to precipitation did not change
significantly across the distribution of sagebrush. This pattern of responses suggests that regional
abundance of this species may be more limited by temperature than by precipitation. We also found
important differences in how the ecologically distinct subspecies of sagebrush responded to the effects
of precipitation and temperature. Our model predicts that a short-term temperature increase could
produce an increase in sagebrush cover at the cold edge of its range and a decrease in cover at the
warm edge of its range. This prediction is qualitatively consistent with predictions from species distri-
bution models for sagebrush based on spatial occurrence data, but it provides new mechanistic insight

and helps estimate how much and how fast sagebrush cover may change within its range.

Key words:

INTRODUCTION

Global climate change is causing species to go extinct in
locations where they once thrived and become common in
areas where they never before occurred (Parmesan and Yohe
2003, Chen et al. 2011). Changing species distributions and
abundances will have profound consequences for ecosystem
functioning, the spread of diseases, and the future of biodi-
versity on Earth (Pachauri et al. 2015). To anticipate the
future effects of climate change, we need not only a detailed
species-specific understanding of how climate determines
species occurrences, but also models to predict how much
and how fast species’ abundances will change within their
current range (Ehrlén and Morris 2015).

Current approaches to this challenge generally use either
species’ distribution models fit to occurrence data at a large
spatial scale or population models fit to annual observations
of species performance at a single location. By coupling data
on annual variation in species performance with data on
annual variation in climate, population models can be used to
estimate species’ sensitivity to temperature and precipitation
(e.g., Adler et al. 2012, Lunn et al. 2016). For many locations
on the globe, the difference in temperature or precipitation
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between two subsequent years can be nearly as great as the
projected magnitude of long-term climate change at that loca-
tion (Mora et al. 2013). This makes multi-year population
data collected at a single site a potentially powerful tool for
understanding how populations could respond to climate
change in the future (Adler et al. 2012, Lunn et al. 2016).

Nevertheless, this approach has rarely been applied at the
range-wide scale for broadly distributed species (but see
Chen et al. 2010, Amburgey et al. 2018). This deficit can be
attributed to the fact that long-term population data is usu-
ally collected at only a few locations and rarely across an
entire species’ distribution. Because widespread species
often show important clinal and ecotypic variation in tem-
perature and drought tolerance across their range (Kolb and
Sperry 1999, Rehfeldt et al. 1999, Millien et al. 2006), hav-
ing population models fit to only one site within a species
distribution may not be a good indication of how that spe-
cies as a whole will respond to climate change. In the context
of understanding species’ response to global climate change,
this makes it all the more important to study many popula-
tions encompassing a broad range of conditions (Ehrlén and
Morris 2015).

Species distribution models offer an alternative approach
to predicting how wide-spread species will be affected by cli-
mate change, but they have their own shortcomings. Dis-
tribution models are generally used to predict species
occurrence rather than abundance, and often assume that
regional variation in occurrence is in equilibrium with regio-
nal variation in climate. However, this assumption may not



2 ANDREW R. KLEINHESSELINK AND PETER B. ADLER

be warranted if dispersal barriers and stochastic population
extinctions have shaped where species occur. Species may
even occur in areas outside of their climate niche due to
immigration or because remnant populations do not imme-
diately go extinct after climate change (Guisan and Thuiller
2005, Holt and Keitt 2005). Even if the underlying assump-
tions of distribution models are valid, without a population
model that includes temporal dynamics, distribution models
cannot tell us how fast populations will change in the short-
term or how species abundances will change within a spe-
cies’ range. This missing information is often critical for
management and conservation.

In theory, with enough multi-year population data col-
lected at sites across a species’ range, one could analyze popu-
lation sensitivity to climate at the scale of species distribution
models (Ehrlén and Morris 2015, Amburgey et al. 2018). For
example, Ettinger et al. (2011) studied annual variation in
growth in conifer species across a wide elevation range.
Annual climate variation was strongly correlated with tree
growth at the species’ upper elevation range limit, but not at
their lower elevation limit. This implied that climate limits the
high elevation edge of these species’ distributions but not nec-
essarily their low elevation edge. This mechanistic insight into
the role of climate would be incomplete if growth had only
been studied at one site, and would be obscured by a species
distribution model fit only to occurrence data.

We propose that comparing how a species responds to
annual climate variation in multiple populations across its
range can provide valuable insight into how that species’ will
be affected by long-term climate change. In particular, we
expect that those species that which will be most affected by
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long-term climate change will show a specific pattern of
response across their range: in the hottest parts of their
range, populations will decrease after warmer than average
years, whereas in colder parts of the range, populations will
increase after warmer than average years (Fig. 1A-C; see
also Amburgey et al. 2018). Such a pattern can be tested sta-
tistically by examining whether the short-term effect of tem-
perature anomalies on population growth rates changes
from positive to negative with increases in the average tem-
perature of each location (Fig. 1b). A similar pattern would
be expected for precipitation or any other aspect of annual
climate variation that limits a species’ distribution. Finding
such a pattern would suggest a strong link between the cli-
mate driver and the species’ long-term abundance and distri-
bution. On the other hand, if sensitivity to short-term
climate variation is similar across sites with different average
climate, this would indicate that while the climate variable
may influence local population dynamics, it does not play
an important role in determining the species’ geographic dis-
tribution. Our expectation is founded on the assumption
that short-term sensitivity of a species to annual climate
variation can be a good indicator of how that species will
respond to longer-term climate change (Ludwig et al. 20006).

Case study with big sagebrush (Artemisia tridentata )

Big sagebrush is a dominant shrub found across much of
western North America, occurring from forest edges to prai-
ries and from low elevation deserts to high elevation moun-
tains (Kuchler 1970). Sagebrush provides unique and critical
habitat for many endemic species of conservation concern

B C
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Hypothetical effects of annual temperature variation on populations of a widespread species. Figures in the top row correspond to

three sites, from coldest (A) to warmest (C), and show population growth rate on the y-axis and annual temperature anomalies on the x-axis.
Years of above average temperature are expected have a positive effect at the coldest site (A), a weak effect at sites in the center of the species’ cli-
matic range (B), and a negative effect at the warmest site (C). The lower figure plots the temperature sensitivity of each population against the
average temperature at each site. A negative slope in the lower figure supports the hypothesis that temperature controls the species’ distribution.
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such as the Greater Sage-grouse (Centrocercus urophasianus)
(Connelly et al. 2000). Distribution models for sagebrush
typically indicate that climate change will cause large
decreases in the total area suitable for sagebrush in the
future (Neilson et al. 2005, Bradley 2010, Schlaepfer et al.
2012a, Still and Richardson 2015). Climate change could
cause a decrease in snow cover and an increase in evapora-
tion, both of which would lead to decreased soil moisture
during the growing season and reduce sagebrush growth
(Schlaepfer et al. 20124, b).

Direct evidence for the effects of short-term climate varia-
tion on sagebrush comes from a multi-year global warming
experiment and analysis of sagebrush growth rings. Harte
et al. (2015) found that sagebrush cover increased substan-
tially in response to 20 years of artificial warming at high
elevation in the southern Rocky Mountains. This increase
was linked to a longer snow-free growing season at higher
elevations with warming (Perfors et al. 2003). In contrast, at
lower elevation sites that are warmer and drier, sagebrush
growth appears to decrease in response to warmer than
average years (Poore et al. 2009, Apodaca et al. 2017).

Complicating detection of relationships between climate
and sagebrush performance is the fact that sagebrush com-
prises many ecologically distinct subspecies or varieties. The
three most common subspecies have more or less distinct cli-
mate niches: mountain big sagebrush (4. t. ssp. vaseyana) is
found where snowfall is high, basin big sagebrush (4. ¢. ssp.
tridentata) is found in warmer areas, and Wyoming big sage-
brush (A4. t. ssp. wyomingensis) is dominant in the most arid
regions (Rosentreter 2001). These differences in distribution
reflect underlying differences in germination (Meyer et al.
1990), drought adaptation (Kolb and Sperry 1999), phenol-
ogy (Richardson et al. 2017), and response to temperature
(Hansen et al. 2008, Brabec et al. 2017, Chaney et al. 2017).

Based on our conceptual model (Fig. 1), we predicted that
sagebrush population growth rates will decrease during war-
mer than average years in the hottest parts of its range,
whereas population growth rates will increase during war-
mer than average years in the coldest sites. Similarly, if sage-
brush distribution is limited by precipitation, we expected
sagebrush populations would respond positively to wetter
than average years in drier areas but negatively to wetter
than average years in wetter areas. We also expected that
sagebrush subspecies might show distinct patterns of
response to annual climate variation, with Wyoming big
sagebrush showing a strong response to annual variation in
precipitation, whereas mountain sagebrush, would show a
stronger response to annual variation in temperature. Find-
ing these patterns would support a link between local popu-
lation dynamics and the climate niche of sagebrush and
suggest that the future distribution and abundance of sage-
brush will be sensitive to long-term climate change.

METHODS

Multi-year sagebrush cover data sets

We assembled multi-year data on sagebrush cover or sage-
brush production through literature searches and by con-
tacting scientists and natural resource managers at federal
and state land management agencies. Only data sets that
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directly measured big sagebrush (Artemisia tridentata) abun-
dance in permanent monitoring plots for two or more con-
secutive years were included in the analysis. From each
study, we extracted information on the exact plot location
(latitude and longitude), the year of data collection, the plot
size, the subspecies of sagebrush in the plot, the measure-
ment type, and the measurement method (e.g., line-
intercept, point intercept, visual estimate; Appendix Sl:
Table S1). Most sagebrush vegetative growth occurs before
mid-summer (DePuit and Caldwell 1973) and most data sets
measured sagebrush abundance between early and late sum-
mer. We excluded data from experimental treatments that
would affect sagebrush cover, such as burning, herbicide
application, irrigation, fertilization, or artificial warming.
We included a small number of plots from Wyoming where
harvester ants were experimentally removed using pesticide
and we included a small number of plots within grazing
exclosures (Appendix S1: Table S2).

For studies that reported multiple plots from multiple
locations, we preserved plot groupings or location identifiers
as reported by the original study authors. In our data set,
only a small number of plots or transects included more
than one subspecies, reflecting a tendency for co-occurring
sagebrush subspecies to segregate on topographic gradients
or soil types (Barker and McKell 1983). However, it is likely
that some mixed stands in our data were recorded as a single
subspecies, especially because sagebrush subspecies can be
hard to distinguish (Rosentreter 2001). This could be a
source of error for our individual subspecies models. A com-
plete list of the data sources and references describing meth-
ods for each data set are included in the online supporting
information (Appendix S2).

The full database of sagebrush cover and production
estimates included 8,175 observations of annual changes
in sagebrush cover or production from 1,066 plots, in 131
locations across the western United States (Fig. 2). The
data captures most of the range of climate occupied by
sagebrush, from sites with mean annual temperatures of
1° to 13°C and mean annual precipitation from 157 to
883 mm (Appendix SI: Figs. SI and S2), although we
had relatively fewer points from cold and wet regions
(Appendix S1: Fig. S1). Sagebrush not identified to sub-
species was the most common type in our data set, with
Wyoming big sagebrush second, mountain sagebrush third
and basin big sagebrush the least common (Appendix S1:
Table S3).

Autoregressive model for sagebrush abundance

We used a discrete time Gompertz population model to
analyze the cover and production time-series and draw infer-
ence about the effects of interannual climate variation on
sagebrush abundance (Ives et al. 2003). In this model, cover
or production at the plot or transect level in year ¢ is depen-
dent on cover or production in the previous year t — 1 via
the following relationship

n, = nyexpla + (b —1)logn, ] (1

where n, is the abundance (e.g., percent cover or density) in
year ¢, a is the intrinsic rate of increase, and b is the
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FiG. 2. Map of sites with multi-year sagebrush cover data in the western United States. Point size corresponds to number of observations
at each site. Gray areas show the distribution of sagebrush based on the USGS SAGEMAP data set (http://sagemap.wr.usgs.gov/). Inset
shows an example of multi-year sagebrush cover data from three monitoring plots at Camp Williams, Utah.

dependence on previous year’s population abundance.
Log transforming the abundance values results in a simple
linear model

Yo =a+ by 2

where y, = log n,. Importantly, this model predicts a stable
long-term equilibrium abundance J for the population at

¥ =a/(1-b). 3)

Annual climate covariates can be incorporated in this
model as simple additive effects on the log-transformed
abundance, y,, during the transition from year t — 1 to
year t

yo=a+by i +x_,0 “)
where x;_; is a vector of annual weather variables in year

t—1 and 0 is a vector of coefficients describing the effects of
each variable on the population growth rate.

Climate covariates

For each study site, we extracted monthly historical
weather data from the PRISM data set (Daly et al. 2008; data
available online).> We focused on growing season temperature
at two different time windows: tmax, the average daily maxi-
mum temperature of the spring of year #, and tmaxi,,, the
average daily maximum temperature for the spring through
fall season for years t — 1 to ¢t — 3, where ¢ is the year of the
current observation of sagebrush cover (Appendix SI:
Fig. S3a). In most of its distribution, this represents the sea-
sonal window when sagebrush is actively growing. Although
sagebrush may be influenced by winter temperatures (Brabec
et al. 2017), this effect may depend on snow cover (Hanson
et al. 1982). We avoided this complication of winter tempera-
ture by focusing instead on spring through fall temperatures.
Likewise we considered tmax rather than the average daily
minimum temperature because tmax is associated with day-
time highs that control spring snowmelt and sagebrush

3 http://www.prism.oregonstate.edu
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growth in cold climates and, in warm climates, could be asso-
ciated with mid-day water stress. Moreover, there is some evi-
dence that tmax is a better predictor of sagebrush growth
than tmin (Apodaca et al. 2017). We included cumulative
precipitation at two different time windows: ppt, November
to May in year ¢, and ppt;,, cumulative precipitation of the
previous three years starting in November, (year ¢ — 3 to year
t — 1) (Appendix S1: Fig. S3b). Our choice to include two
time windows for the temperature and precipitation variables
was motivated by the observation that growth of big sage-
brush, and closely related Artemisia species, can show lag
responses to climate: i.e. the effect of climate variation experi-
enced in the past 12 months may not match the effect of cli-
mate variation experienced in the years before that (Adler
et al. 2012, Apodaca et al. 2017).

We chose these seasonal windows and lags a priori based
on the rationale above and previous research on sagebrush
demographic response to climate (Tredennick et al. 2016,
Apodaca et al. 2017). We focused on this limited number of
climate variables rather than undertaking a variable selec-
tion process to avoid evaluating all possible combinations
between seasonal windows and annual lags for each of the
four climate variables. This allowed us to more rigorously
test our main hypotheses within a small set of defensible and
interpretable climate effects (Fig. 1). After completing our
main analysis, we tested whether our main conclusions were
sensitive to the number of years included in the ppt;,, and
tmaxj,g variables (Appendix S1: Table S7).

For analysis, the seasonal temperature and precipitation
measures were centered on their long-term averages at each
site for the period 1901-2000. We also calculated standard-
ized precipitation evapotranspiration index (SPEI) for each
time window. SPEI takes into account temperature and pre-
cipitation and accounts for the fact the two can interact to
influence water availability for plants. We calculated SPEI in
the SPEI package in R (Begueria and Vicente-Serrano
2013). We fit four candidate models expressing the short-
term precipitation anomalies either as a raw deviation from
the average, the raw deviation divided by the standard devia-
tion, the deviation as a proportion of the average, or as
SPEI. We compared these models using Aikake Information
Criteria (AIC), and if these scores were appreciably differ-
ent, we chose the precipitation transformation with the low-
est AIC score for further analysis.

We also calculated site-specific long-term averages for
spring through fall monthly maximum temperature (tmaxayg)
and winter through spring precipitation (pptay,). To allow for
the effect of temperature anomalies to vary across sites with
different average temperature, we included the interaction of
each of the short-term temperature anomalies with the site-
specific long-term temperature averages (tmax : tmax,ye and
tmaxi,g : tmax,y,). Likewise, we included interactions
between the short-term precipitation anomalies and the long-
term average of cumulative winter through spring precipita-
tion (ppt:pptavs and pptiag:Pptave). These four interaction
effects are key to testing our hypothesis that annual climate
effects should change systematically across gradients in aver-
age climate (Fig. 1). If sagebrush distribution is limited by
temperature or precipitation at the extremes of its climate
distribution, then we expect to find negative interaction
effects.
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Statistical model

To fit the autoregressive population model, we used a gen-
eral linear mixed effects model in the Ime4 package in R
(Bates et al. 2015, R Core Team 2015). Our model included
random effects to reflect spatial and temporal grouping fac-
tors in the data: each unique plot or transect, plot location,
and year. Location groups were designated as in the original
studies, but generally grouped plots at the scale of 1-5 km.
Year effects were unique to each location so that only plots
near one another and exposed to similar conditions experi-
enced the same year effects. We allowed the intercept of the
Gompertz model to vary with each of these grouping fac-
tors. Likewise, we allowed the relationship between the pre-
vious year’s abundance (y,_;) and the current year’s
abundance (y,) to vary by plot, reflecting variation between
plots in the strength of density dependence.

We also allowed the intercept and slope of the Gompertz
model to vary with the sagebrush subspecies type in each
plot, reflecting differences in the average abundance and
growth rates of each subspecies. The data set is mainly com-
prised of absolute percent cover estimates (N = 7,976), but
there were also some data sets that reported annual produc-
tion estimates for sagebrush in grams per square meter per
year (N = 199; Appendix S1: Table S1). We fit a separate
intercept and slope for each data type as indicated by the
variable dtype.

Finally, we added the four annual weather variables
(tmax, tmaxiag, ppt, pptiae) and their interaction with long-
term average climate variables (tmaxj,g, pptay,) as fixed
effects in order to model the effects of weather and climate.
The full model written in Imer notation is given in
Appendix S1: Eq. S1.

We judged interaction effects between average climate and
annual deviation in climate as significant by comparing
models with and without the interaction effect using a likeli-
hood ratio test (P(x*) < 0.05). We calculated an R for our
model using the MuMIn package in R (Johnson 2014,
Barton 2016).

After fitting models to the full data set, we explored
whether sagebrush subspecies responded differently to annual
variation in climate by fitting data from each subspecies to a
separate model with the same structure as the overall model
above but without the separate term for subspecies.

Climate change sensitivity

We used the fitted model to examine how perturbations in
temperature or precipitation could affect sagebrush abun-
dance across the sites observed in the data set. For each site,
we predicted the proportional change in sagebrush cover
that would occur with a one standard deviation increase in
temperature or precipitation across all locations in the data
set. These perturbations changed the values of tmax,
tmaxj,g, ppt, and ppti,, but do not affect the values of
tmax,ye and ppta,e. As a baseline, we set sagebrush abun-
dance at each site to its hypothetical equilibrium abundance
determined by Eq. 3. At this abundance, sagebrush popula-
tion growth rate is predicted to be zero in the absence of
annual weather fluctuations (Ives et al. 2003). Setting the
abundances to this equilibrium and then imposing an
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increase in temperature or precipitation is a way to isolate
the change in abundance caused only by the weather anoma-
lies rather than the effects of density dependence. We gener-
ated predictions and bootstrapped 95% confidence intervals
around predictions using the bootMer function in lme4
(Bates et al. 2015). Predictions were generated without
incorporating the uncertainty from the plot, location and
year-specific random effects.

REsuLTs

We found that all four transformations of the precipita-
tion anomalies (raw, standardized, proportion of average,
and SPEI) produced models with nearly equal AIC scores
(within 1). In our subsequent analyses, we used the model
with precipitation anomalies (ppt and ppt,,,) scaled by their
standard deviations and report these results in Table 1. The
marginal R?, meaning the variance explained only by fixed

TaBLE 1. Coefficients from a linear mixed effects model fit to
sagebrush data (n = 8,1795).

Fixed effect Estimate SE  ¢Value LRT  P(x?)
a 1.26 0.58 2.16

b 0.50 0.02 2291

ssp_basin —0.41 0.25 —1.61

ssp_mountain 0.70 0.20 3.54

ssp_Wyoming 0.37 0.14 2.59
dtype_production 1.27 0.30 4.31

PPlave 0.98 0.73 1.34

ppt —0.01 0.03 —0.17

PPliag —0.03 0.05 —0.73

tmaX,y, —0.03 0.03  —0.96

tmax —0.21 0.14 —1.54

tmaxi,g 0.38 0.14 2.65

ssp_basin:b -0.05 0.08 —0.65
ssp_mountain:b —0.40 0.05 -7.72
ssp_Wyoming:b —0.23 0.04 —6.30
dtype_production:b -0.32 0.08 —3.86

PPt:PPtaye 0.14 0.14 1.02  1.059 0.303
PPliagPPlave 0.17 0.20 0.87 0.765 0.382
tmax: tmax,ye 0.01 0.01 1.34  1.829 0.176
tmaxp,, : tmax,,, —0.02 0.01 —-249  6.194 0.013*
Random effect no. SD cor

loc 131 0.44

loc/year 844 0.38

plot 1,066 0.80

plot:y,. 1,066 0.30 —0.584

Residual 0.32

Notes: Estimates for the model intercept (@) and the effect of last
year’s abundance (b) correspond to the variables in the Gompertz
population model described in Eq. 1. The effects ssp_basin,
ssp_mountain and ssp_wyoming give the intercepts of each for sub-
species with unidentified sagebrush as the reference level. The effect
dtype_production_gives the intercept for plots in which sagebrush
production (g-m~2-yr~') was measured rather than cover. LRT and
P(y”) report a likelihood ratio test on the climate interaction effects
(an “*” indicates significance at the P < 0.05 level). Weather and cli-
mate effects are defined in the “climate covariates” section of the
methods. Random effects are for location (loc), location by year
(loc/year), plot (plot), and a plot-dependent effect of last year’s
sagebrush abundance (plot:y, ;). cor reports the correlation
between the plot-level effects.

Ecology, Vol. xx, No. xx

factors, for this model was 0.19 while the conditional R?,
which includes variance explained by the random effects,
was 0.92 (Barton 2016).

Using the estimates of the model intercept (@), the effect
of last year’s abundance (b), and the fixed effects for sub-
species (Table 1) allowed us to calculate equilibrium abun-
dances from Eq. 3 of 6.6%, 2.6%, 7.2%, and 6% for cover of
unidentified, basin, mountain, and Wyoming sagebrush sub-
species. These equilibrium values were close to the observed
log-average cover for each subspecies: 8.4%, 3.6%, 5.1%,
and 8% for cover of unidentified, basin, mountain, and
Wyoming sagebrush, respectively.

The strongest of the four climate interaction effects was
the interaction between the lag growing season temperature
and long-term average growing season temperature at that
site (tmaxy,, by tmax,,, interaction; Table 1). The effect of
tmaxi,g Was negative at the hottest sites but positive at cold-
est sites; sagebrush cover increased after periods with warm
growing seasons at cold sites, but decreased after periods
with warm growing seasons at hot sites (Fig. 3d). A likeli-
hood ratio test showed that including this interaction effect
significantly improved model fit compared to a model with-
out this effect (Table 1).

The effect of spring average maximum temperature (tmax)
was in the opposite direction of the lag growing season tem-
perature (tmaxi,g), although this effect was not significant
based on the likelihood ratio test (Table 1). The direction of
this effect means that warmer spring temperatures had a
negative effect at colder sites but a positive effect at warmer
sites (Fig. 3B). Neither of the precipitation effects showed a
significant interaction with long-term average precipitation
(Table 1; Fig. 3A,C).

A model fit only to the Wyoming sagebrush data showed
a positive interaction between ppti,, and ppt,,, and a signifi-
cant positive interaction between tmax and tmaxX,y
(Appendix S1: Table S4). This meant that wetter than aver-
age years preceding sagebrush measurement had a negative
effect at drier sites but a positive effect at wetter sites
(Appendix S1: Fig. S4c). Likewise, warmer than average
spring temperatures had a positive effect at warmer sites but
a negative effect at colder sites (Appendix S1: Fig. S4b).

A model fit just to mountain sagebrush did not show sig-
nificant interactions between the short-term climate vari-
ables and their long-term averages (Appendix S1: Table S5).
However, mountain sagebrush showed a positive response to
above average precipitation throughout its distribution
(Appendix S1: Fig. S5a,c). Likewise it responded positively
to warmer lag temperatures throughout its range
(Appendix S1: Fig. S5d). None of the climate interaction
effects were significant for basin big sagebrush, although
there were many fewer observations of this species in the
data set (Appendix S1: Table S6; Fig. S6).

The predicted effect of a one standard deviation increase
in ppt and ppt;,e across all sites was an increase in sagebrush
cover in the wettest sites and no change in the driest sites
(Fig. 4). The predicted response to a one standard deviation
increase in tmax and tmaxp,, was a slight increase in sage-
brush at the coldest sites and a slight decrease at the warm-
est sites. For both scenarios, bootstrapped 95% confidence
intervals around the predictions widely overlapped zero
(Fig. 4).
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To evaluate whether our choice of the time window for the
PPliag and tmax,, variables affected our results, we re-fit our
basic model using a set of alternative definitions for the
Pptiag and tmaxy,, variables and ranked these models using
AIC (Appendix S1: Table S7). The top ranked models
included lag growing season temperature averaged over the
previous 1-4 or 1-3 years and all showed a negative interac-
tion between this variable and site-level average growing
season temperature (tmaxj,,:tmax,e interaction).

Discussion

We found mixed support for our conceptual model that
the response of sagebrush populations to annual climate
would vary systematically across its climatic range.

Sagebrush response to the growing season temperature
anomaly of the previous three years (tmaxi,z) matched our
hypothesis well, but sagebrush response to spring tempera-
ture anomalies and precipitation anomalies did not (Fig. 3).
A significant negative interaction between average growing
season temperature and annual temperature deviation
(Table 1) shows that sagebrush cover decreased in response
to warmer than average years in hot sites but increased in
response to warmer than average years in cold sites. This
supports the idea that average growing season temperatures
may broadly limit where sagebrush can grow. Thus, growing
season temperature may be a key variable for predicting the
future of sagebrush distribution and local abundances.

Our analysis shows the potential utility of analyzing popu-
lation sensitivity to climate at the scale of an entire species’
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distribution (Ehrlén and Morris 2015). Our results can be
compared with those recently published by Amburgey et al.
(2018) for a widespread species of amphibian. As in our anal-
ysis, they found that populations at the warmer edge of the
range showed a negative response to periods of above average
temperatures, whereas populations located at the colder edge
showed a positive response. They also found that population
sensitivity to other climate drivers, such as precipitation, were
not as expected. These studies show the potential for using
demographic analyses to determine which of the many
aspects of climate are most important for determining spe-
cies’ ranges and abundance. In the context of climate change,
the models presented in Amburgey et al. (2018) and in our
current study, generate testable predictions about how species
will respond to climate variation. Importantly, these predic-
tions are at the scale of short-term changes in local abun-
dance, thus they can be generated and validated annually,
which will allow for a continuous process of model improve-
ment. This contrasts with SDMs, which are often used to
predict species’ distributions many decades in the future,
making them difficult to validate empirically.

Our results suggest that future studies should focus on the
effects of above average temperatures on sagebrush in the
warmest parts of its range. We found that sagebrush

population growth rates decline in response to warming in
locations where average growing season temperatures are
above 22°C (corresponding to about 10°C mean annual tem-
perature; Figs. 3D and 4A). This point can be compared to
the climate pivot points observed for desert vegetation in the
American southwest (Munson et al. 2013). The negative
effects of temperature may be due to direct effects on the
growth and respiration of sagebrush (Hansen et al. 2008),
or to temperature driven changes in soil moisture and plant
water status (Schlaepfer et al. 2012¢). Physiological data
suggest that growth and photosynthesis of sagebrush leaves
may be optimum at about 20°C and decline at higher tem-
peratures (DePuit and Caldwell 1973, Hansen et al. 2008).
Likewise, Apodaca et al. (2017) and Poore et al. (2009)
found that sagebrush growth rings were reduced in response
to above average spring through summer temperatures in
Nevada and Colorado, indicating that warm temperatures,
either directly or indirectly, inhibit sagebrush growth.

In colder climates, however, both experimental evidence
and some observational data show that warmer than average
temperatures can enhance sagebrush growth (Perfors et al.
2003, Harte et al. 2015, Tredennick et al. 2016). In cold
regions, below average temperatures may be especially detri-
mental for sagebrush if they lengthen the duration of snow
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cover and shorten the growing season (Harte et al. 2015).
Importantly, the benefit of warmer temperatures to sage-
brush in cold sites appeared to be greater than the negative
effect of warmth at hot sites (Fig. 3D). We also found that
the lag effects of temperature (tmaxj,,) and the immediate
effects of spring temperature (tmax) were nearly opposite
(Fig. 3B,D; but note that the effect of tmax was not signifi-
cant). The opposing spring and lag growing season effects
counter one another over the longer-term: warm years at
cold sites for instance tend to reduce sagebrush growth in
the first year, but the legacy of this effect is a strong increase
in growth over the next few years. This counterbalancing
effect may explain why we predict only a limited change in
cover in response to a simultaneous increase in both temper-
ature anomalies (Fig. 4B).

The effects of precipitation were not significant and their
direction was opposite to that we expected. The interaction
between lag precipitation and average precipitation was pos-
itive (Table 1), meaning that the effect of precipitation either
does not change from the dry to wet locations or has a posi-
tive effect only at the wettest edge of sagebrush distribution.
Our result indicates that low annual precipitation may not
be the limiting factor for sagebrush populations at the dry
edges of its distribution. Indeed some SDMs show that pre-
cipitation is only a weak predictor of sagebrush occurrence
(Still and Richardson 2015).

Our model predicts that a hypothetical increase in precipi-
tation will be most beneficial to sagebrush populations
already growing in the wetter parts of its range (Fig. 4A).
There is evidence that sagebrush growth can be water limited
even in relatively moist climates (Loik 2007, Poore et al.
2009, Reed and Loik 2016). Over longer time periods how-
ever, precipitation may still play a role in limiting sagebrush
if it promotes competition with other species such as trees
(Leffler and Caldwell 2005).

Our result that sagebrush did not respond strongly to wet
years at dry sites seems strange. For instance, sagebrush
growth rings at relatively dry sites in Nevada (mean annual
precipitation 250-300 mm) showed a positive response to
years with above average precipitation (Apodaca et al.
2017). The response of sagebrush to precipitation may be
complicated by an interaction with local soil depth: at a dry
site in Idaho (mean annual precipitation 220 mm), winter
irrigation increased sagebrush growth in deeper soils but
decreased growth in shallow soils (Germino and Reinhardt
2014). A possible explanation for this phenomenon is that
sagebrush root growth is very sensitive to low oxygen (Lunt
et al. 1973) and may die off rapidly in response to flooding
or rapid spring snow melt (Ganskopp 1986).

We saw important differences between two dominant eco-
types of sagebrush, Wyoming sagebrush and mountain sage-
brush. Above average temperatures and above average
precipitation had weak positive effects on mountain sage-
brush throughout its range (Appendix S1: Fig. S5¢,d). This
finding agrees with the surprising fact that mountain sage-
brush is more sensitive to freezing temperatures than Wyom-
ing sagebrush (Brabec et al. 2017). Wyoming sagebrush,
which is generally found in drier and warmer conditions
than mountain sagebrush, responded positively to tmax
in warmer locations and negatively in colder locations
(Appendix S1: Fig. S4b). One potential explanation for this
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counterintuitive result is if warm temperatures in colder
parts of this species range induce earlier snowmelt or earlier
leaf out; either could expose plants to more freezing damage
in the spring as growth begins (Brabec et al. 2017, Chaney
et al. 2017). Wyoming sagebrush also responded negatively
to above average precipitation in the driest part of its range
but benefited from precipitation in the wettest parts of its
range (Appendix S1: Fig. S4c). We speculate that this may
reflect sensitivity of Wyoming sagebrush to saturated soils
(Lunt et al. 1973), or to increased competition from peren-
nial grasses. In drier locations, periods of above average pre-
cipitation may stimulate the growth of grass at the expense
of sagebrush. This kind of negative indirect effect has been
reported for three-tip sagebrush Artemisia tripartita, a close
relative of 4. tridentata (Adler et al. 2012).

Basin big sagebrush showed no significant response to the
weather variables. This lack of sensitivity may reflect the
small sample size, but also could be due to where this sub-
species occurs, often growing along seasonal drainages and
in coarser textured soils (Barker and McKell 1983). This
access to a more consistent supply of moisture may dampen
the effects of weather on this species.

Implications for the future of sagebrush

Climate models consistently project a region-wide
increase in temperatures across western North America,
accompanied by more complex and less certain changes in
precipitation (Garfin et al. 2014). Species distribution mod-
els for sagebrush predict that regional warming will result in
large areas of current sagebrush habitat becoming unsuit-
able for sagebrush in the future (Neilson et al. 2005, Bradley
2010, Schlaepfer et al. 20124, Still and Richardson 2015).
Moreover, physiological, demographic and species distribu-
tion models appear to agree on the general direction of sage-
brush sensitivity to climate (Renwick et al. 2018). All these
models project that sagebrush populations in warmer
regions are most at risk of decline, but that warming could
bring cold regions currently without sagebrush within the
climate niche of sagebrush. The results of our analysis
lend some, albeit weak, support to this projected pattern
(Fig. 4).

While our model cannot predict population extinction or
colonization it does at least suggest that population growth
rates will change at the warm and cold edges of sagebrush
distribution in ways that would promote extinction and col-
onization. Moreover, changes in the abundance of sagebrush
where it already exists could have important consequences
for other species and ecosystem function. For instance, the
threatened Greater Sage-grouse requires 10-30% cover of
sagebrush for winter habitat (Connelly et al. 2000). Our
model predicts that before large-scale shifts in sagebrush dis-
tribution become apparent, several years of anomalously
warm weather could lower sagebrush cover and decrease
habitat quality for this species in warmer areas and increase
habitat quality in colder areas (Fig. 4).

Our model leaves out many factors that could influence the
future of sagebrush including the effects of fire. The probabil-
ity of fires in sagebrush ecosystems is closely tied to cheat-
grass (Bromus tectorum) invasion, which may increase
with climate change (Bradley 2009). Recovery of sagebrush
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populations following fire requires germination and seedling
survival in burned areas, demographic processes that are con-
trolled partly by annual climate (Maier et al. 2001, Chaney
et al. 2017). Reduced seedling survival in warmer years in hot
sites could exacerbate the population-level effects of reduced
sagebrush cover we predict for those sites (Schlaepfer et al.
2014); while in colder sites, increases in mountain sagebrush
recruitment in warmer years (Maier et al. 2001) may rein-
force the increases in sagebrush abundance we predict at these
sites (Fig. 4). Unfortunately, our data are likely to miss the
effects of climate on these processes because the growth and
survival of tiny seedlings are unlikely to have much influence
on sagebrush cover at the scale of plots and transects. We also
confined our analysis to effects of temperature during the
growing season, but winter temperatures either directly, or
through their effects on snow pack, could also have impor-
tance consequences for sagebrush (Schlaepfer et al. 20125,
Brabec et al. 2017, Chaney et al. 2017).

At longer time scales, changes in the distribution of sage-
brush subspecies, hybridization between subspecies and evo-
lutionary adaptation within populations may give sagebrush
some potential to adapt to warmer temperatures. Our results
indicate different sagebrush subspecies respond differently
to the effects of annual climate variation (Appendix Sl:
Table S4-S6), a finding which agrees with many physiologi-
cal and demographic differences between subspecies (Meyer
et al. 1990, Kolb and Sperry 1999, Brabec et al. 2017,
Chaney et al. 2017). Hybridization between subspecies or
populations could allow the flow of genes conferring local
adaptation between populations (Chaney et al. 2017).

CONCLUSION

The challenges of understanding the effects of climate
change on local population abundance and large scale spa-
tial distributions should not be tackled separately. Under-
standing the full ecological effects of climate change will
require drawing inference from multiple data sources that
span a range of temporal and spatial scales. Towards this
goal, our work presents a new approach that could be used
for many species to connect the short-term effects of annual
climate variability with the long-term impacts of climate
change on species’ abundances and distributions.
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