108 research outputs found

    Distributed subglacial discharge drives significant submarine melt at a Greenland tidewater glacier

    Get PDF
    Submarine melt can account for substantial mass loss at tidewater glacier termini. However, the processes controlling submarine melt are poorly understood due to limited observations of submarine termini. Here at a tidewater glacier in central West Greenland, we identify subglacial discharge outlets and infer submarine melt across the terminus using direct observations of the submarine terminus face. We find extensive melting associated with small discharge outlets. While the majority of discharge is routed to a single, large channel, outlets not fed by large tributaries drive submarine melt rates in excess of 3.0 m d−1 and account for 85% of total estimated melt across the terminus. Nearly the entire terminus is undercut, which may intersect surface crevasses and promote calving. Severe undercutting constricts buoyant outflow plumes and may amplify melt. The observed morphology and melt distribution motivate more realistic treatments of terminus shape and subglacial discharge in submarine melt models

    Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations

    Get PDF
    At tidewater glaciers, plume dynamics affect submarine melting, fjord circulation, and the mixing of meltwater. Models often rely on buoyant plume theory to parameterize plumes and submarine melting; however, these parameterizations are largely untested due to a dearth of near‐glacier measurements. Here we present a high‐resolution ocean survey by ship and remotely operated boat near the terminus of Kangerlussuup Sermia in west Greenland. These novel observations reveal the 3‐D structure and transport of a near‐surface plume, originating at a large undercut conduit in the glacier terminus, that is inconsistent with axisymmetric plume theory, the most common representation of plumes in ocean‐glacier models. Instead, the observations suggest a wider upwelling plume—a “truncated” line plume of ∼200 m width—with higher entrainment and plume‐driven melt compared to the typical axisymmetric representation. Our results highlight the importance of a subglacial outlet's geometry in controlling plume dynamics, with implications for parameterizing the exchange flow and submarine melt in glacial fjord models.NNX12AP50

    Ice thickness estimates of Lemon Creek Glacier, Alaska, from active-source seismic imaging

    Get PDF
    Lemon Creek Glacier, a temperate valley glacier in the Juneau Icefield of Southeast Alaska, is the site of long running (>60 years) glaciological studies. However, the most recent published estimates of its thickness and subglacial topography come from two ∼50 years old sources that are not in agreement and do not account for the effects of years of negative mass balance. We collected a 1-km long active-source seismic line on the upper section of the glacier parallel and near to the centerline of the glacier, roughly straddling the equilibrium-line altitude. We used these data to perform joint reflection-refraction velocity modeling and reflection imaging of the glacier bed. We find that this upper section of Lemon Creek Glacier is as much as 150 m (∼65%) thicker than previously suggested with a large overdeepening in an area previously believed to have a uniform thickness. Our results lead us to reinterpret the impact of basal motion on ice flow and have a significant impact on expectations of subglacial hydrology. We suggest that further efforts to develop a whole-glacier model of subglacial topography are necessary to support studies that require accurate models of ice thickness and subglacial topography.We thank the Juneau Icefield Research Program (JIRP) for their support with facilities at Camp 17 and logistical planning for the field work. We thank Emily Graves, Joachim Schalk and Celeste Labedz for their participation in the field work. We thank the Incorporated Research Institutions for Seismology Seismic Source Facility at the University of Texas at El Paso for their assistance with the seismic sources. We thank two reviewers for their helpful commentary, and the Journal’s editorial volunteers and staff for their invaluable role in supporting this publication. This work was partially funded by Marianne Karplus’s startup funds at the University of Texas at El Paso.Ye

    The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords

    Get PDF
    Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes enhance melt and undercutting, leading to calving and potential glacier destabilization. Here we systematically evaluate how simulated plume structure and submarine melt during summer months depends on realistic ranges of subglacial discharge, glacier depth, and ocean stratification from 12 Greenland fjords. Our results show that grounding line depth is a strong control on plume-induced submarine melt: deep glaciers produce warm, salty subsurface plumes that undercut termini, and shallow glaciers produce cold, fresh surface-trapped plumes that can overcut termini. Due to sustained upwelling velocities, plumes in cold, shallow fjords can induce equivalent depth-averaged melt rates compared to warm, deep fjords. These results detail a direct ocean-ice feedback that can affect the Greenland Ice Sheet

    Short-term variability in Greenland Ice Sheet motion forced by time-varying meltwater inputs: implications for the relationship between subglacial drainage system behavior and ice velocity.

    Get PDF
    High resolution measurements of ice motion along a -120 km transect in a land-terminating section of the GrIS reveal short-term velocity variations (<1 day), which are forced by rapid variations in meltwater input to the subglacial drainage system from the ice sheet surface. The seasonal changes in ice velocity at low elevations (<1000 m) are dominated by events lasting from 1 day to 1 week, although daily cycles are largely absent at higher elevations, reflecting different patterns of meltwater input. Using a simple model of subglacial conduit behavior we show that the seasonal record of ice velocity can be understood in terms of a time-varying water input to a channelized subglacial drainage system. Our investigation substantiates arguments that variability in the duration and rate, rather than absolute volume, of meltwater delivery to the subglacial drainage system are important controls on seasonal patterns of subglacial water pressure, and therefore ice velocity. We suggest that interpretations of hydro-dynamic behavior in land-terminating sections of the GrIS margin which rely on steady state drainage theories are unsuitable for making predictions about the effect of increased summer ablation on future rates of ice motion. © 2012. American Geophysical Union

    Review: ‘Gimme five’: future challenges in multiple sclerosis. ECTRIMS Lecture 2009

    Get PDF
    This article is based on the ECTRIMS lecture given at the 25th ECTRIMS meeting which was held in Düsseldorf, Germany, from 9 to 12 September 2009. Five challenges have been identified: (1) safeguarding the principles of medical ethics; (2) optimizing the risk/benefit ratio; (3) bridging the gap between multiple sclerosis and experimental autoimmune encephalitis; (4) promoting neuroprotection and repair; and (5) tailoring multiple sclerosis therapy to the individual patient. Each of these challenges will be discussed and placed in the context of current research into the pathogenesis and treatment of multiple sclerosis

    Seismic Mapping of Subglacial Hydrology Reveals Previously Undetected Pressurization Event

    Get PDF
    Understanding the dynamic response of glaciers to climate change is vital for assessing water resources and hazards, and subglacial hydrology is a key player in glacier systems. Traditional observations of subglacial hydrology are spatially and temporally limited, but recent seismic deployments on and around glaciers show the potential for comprehensive observation of glacial hydrologic systems. We present results from a high-density seismic deployment spanning the surface of Lemon Creek Glacier, Alaska. Our study coincided with a marginal lake drainage event, which served as a natural experiment for seismic detection of changes in subglacial hydrology. We observed glaciohydraulic tremor across the surface of the glacier that was generated by the subglacial hydrologic system. During the lake drainage, the relative changes in seismic tremor power and water flux are consistent with pressurization of the subglacial system of only the upper part of the glacier. This event was not accompanied by a significant increase in glacier velocity; either some threshold necessary for rapid basal motion was not attained, or, plausibly, the geometry of Lemon Creek Glacier inhibited speedup. This pressurization event would have likely gone undetected without seismic observations, demonstrating the power of cryoseismology in testing assumptions about and mapping the spatial extent of subglacial pressurization.This work was made possible in part by hard work in the field by Margot Vore, Daniel Bowden, Galen Kaip, and the students and staff of the 2017 Juneau Icefield Research Program. We especially thank Matt Beedle for provision of the photogrammetrically-produced DEM of Lake Linda, following lake drainage. This work was also aided by the advice of Mike Gurnis and Rob Clayton. We thank Paul Winberry and two anonymous reviewers for their helpful feedback, which improved this paper greatly. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1745301. This work was made possible in part by a University of Idaho seed grant, #FY18-01. DEM provided by the Polar Geospatial Center under NSF-OPP awards 1043681, 1559691, and 1542736.Ye

    The impact of glacier geometry on meltwater plume structure and submarine melt in Greenland fjords

    Get PDF
    Meltwater from the Greenland Ice Sheet often drains subglacially into fjords, driving upwelling plumes at glacier termini. Ocean models and observations of submarine termini suggest that plumes enhance melt and undercutting, leading to calving and potential glacier destabilization. Here we systematically evaluate how simulated plume structure and submarine melt during summer months depends on realistic ranges of subglacial discharge, glacier depth, and ocean stratification from 12 Greenland fjords. Our results show that grounding line depth is a strong control on plume-induced submarine melt: deep glaciers produce warm, salty subsurface plumes that undercut termini, and shallow glaciers produce cold, fresh surface-trapped plumes that can overcut termini. Due to sustained upwelling velocities, plumes in cold, shallow fjords can induce equivalent depth-averaged melt rates compared to warm, deep fjords. These results detail a direct ocean-ice feedback that can affect the Greenland Ice Sheet
    corecore