54 research outputs found

    CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity

    Get PDF
    Amplification of the C19MC oncogenic miRNA cluster and high LIN28 expression has been linked to a distinctly aggressive group of cerebral CNS-PNETs (group 1 CNS-PNETs) arising in young children. In this study, we sought to evaluate the diagnostic specificity of C19MC and LIN28, and the clinical and biological spectra of C19MC amplified and/or LIN28+ CNS-PNETs. We interrogated 450 pediatric brain tumors using FISH and IHC analyses and demonstrate that C19MC alteration is restricted to a sub-group of CNS-PNETs with high LIN28 expression; however, LIN28 immunopositivity was not exclusive to CNS-PNETs but was also detected in a proportion of other malignant pediatric brain tumors including rhabdoid brain tumors and malignant gliomas. C19MC amplified/LIN28+ group 1 CNS-PNETs arose predominantly in children <4 years old; a majority arose in the cerebrum but 24 % (13/54) of tumors had extra-cerebral origins. Notably, group 1 CNS-PNETs encompassed several histologic classes including embryonal tumor with abundant neuropil and true rosettes (ETANTR), medulloepithelioma, ependymoblastoma and CNS-PNETs with variable differentiation. Strikingly, gene expression and methylation profiling analyses revealed a common molecular signature enriched for primitive neural features, high LIN28/LIN28B and DNMT3B expression for all group 1 CNS-PNETs regardless of location or tumor histology. Our collective findings suggest that current known histologic categories of CNS-PNETs which include ETANTRs, medulloepitheliomas, ependymoblastomas in various CNS locations, comprise a common molecular and diagnostic entity and identify inhibitors of the LIN28/let7/PI3K/mTOR axis and DNMT3B as promising therapeutics for this distinct histogenetic entity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00401-014-1291-1) contains supplementary material, which is available to authorized users

    Telomerase inhibition abolishes the tumorigenicity of pediatric ependymoma tumor-initiating cells

    Get PDF
    Pediatric ependymomas are highly recurrent tumors resistant to conventional chemotherapy. Telomerase, a ribonucleoprotein critical in permitting limitless replication, has been found to be critically important for the maintenance of tumor-initiating cells (TICs). These TICs are chemoresistant, repopulate the tumor from which they are identified, and are drivers of recurrence in numerous cancers. In this study, telomerase enzymatic activity was directly measured and inhibited to assess the therapeutic potential of targeting telomerase. Telomerase repeat amplification protocol (TRAP) (n = 36) and C-circle assay/telomere FISH/ATRX staining (n = 76) were performed on primary ependymomas to determine the prevalence and prognostic potential of telomerase activity or alternative lengthening of telomeres (ALT) as telomere maintenance mechanisms, respectively. Imetelstat, a phase 2 telomerase inhibitor, was used to elucidate the effect of telomerase inhibition on proliferation and tumorigenicity in established cell lines (BXD-1425EPN, R254), a primary TIC line (E520) and xenograft models of pediatric ependymoma. Over 60 % of pediatric ependymomas were found to rely on telomerase activity to maintain telomeres, while no ependymomas showed evidence of ALT. Children with telomerase-active tumors had reduced 5-year progression-free survival (29 +/- A 11 vs 64 +/- A 18 %; p = 0.03) and overall survival (58 +/- A 12 vs 83 +/- A 15 %; p = 0.05) rates compared to those with tumors lacking telomerase activity. Imetelstat inhibited proliferation and self-renewal by shortening telomeres and inducing senescence in vitro. In vivo, Imetelstat significantly reduced subcutaneous xenograft growth by 40 % (p = 0.03) and completely abolished the tumorigenicity of pediatric ependymoma TICs in an orthotopic xenograft model. Telomerase inhibition represents a promising therapeutic approach for telomerase-active pediatric ependymomas found to characterize high-risk ependymomas.Canadian Institutes of Health Research [MOP 82727]info:eu-repo/semantics/publishedVersio

    Disruption of the β1L Isoform of GABP Reverses Glioblastoma Replicative Immortality in a TERT Promoter Mutation-Dependent Manner

    Get PDF
    TERT promoter mutations reactivate telomerase, allowing for indefinite telomere maintenance and enabling cellular immortalization. These mutations specifically recruit the multimeric ETS factor GABP, which can form two functionally independent transcription factor species: a dimer or a tetramer. We show that genetic disruption of GABPβ1L (β1L), a tetramer-forming isoform of GABP that is dispensable for normal development, results in TERT silencing in a TERT promoter mutation-dependent manner. Reducing TERT expression by disrupting β1L culminates in telomere loss and cell death exclusively in TERT promoter mutant cells. Orthotopic xenografting of β1L-reduced, TERT promoter mutant glioblastoma cells rendered lower tumor burden and longer overall survival in mice. These results highlight the critical role of GABPβ1L in enabling immortality in TERT promoter mutant glioblastoma.This work was supported by a generous gift from the Dabbiere family (J.F.C.), the Hana Jabsheh Research Initiative (J.F.C.), NIH grant NCI P50CA097257 (J.F.C. and J.A.D.), NCI P01CA118816-06 (J.F.C.), T32 GM008568 and T32 CA151022 (A.M.), and NCI R01CA163336 (J.S.S.), and the Sontag Foundation Distinguished Scientist Award (J.S.S.). C.F. is supported by a US NIH K99/R00 Pathway to Independence Award (K99GM118909) from the National Institute of General Medical Sciences. Additional support was provided by Fundação para a Ciência e Tecnologia SFRH/BD/88220/2012 (A.X.-M.) and IF/00601/2012 (B.M.C.). J.A.D. is an investigator of the Howard Hughes Medical Institute.info:eu-repo/semantics/publishedVersio

    TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma

    Get PDF
    Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21 % of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83 %; 55/66) and WNT (31 %; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5 % of cases and showed no association wit

    Caltubin - A Novel Regulator of Neuronal Microtubule Assembly in Mammals

    No full text
    Microtubules constitute a major component of the neuronal cytoskeleton, and tight regulation of microtubule dynamics is critical in establishing and maintaining proper cellular structure and function. As such, microtubule regulation is central to neuronal differentiation, as well as recovery from neuronal injury. Previously, our lab identified a protein in Lymnaea stagnalis (pond snail) called caltubin that is required for neurite outgrowth and regeneration in snails, and that is sufficient to increase neurite outgrowth and limit retraction of lesioned neurites when introduced into mammalian central neurons by plasmid transfection (Nejatbakhsh et al. 2011). Mechanistically, it was established that caltubin contains 4 putative EF-hand calcium binding domains and associates with tubulin. In this thesis project, a cell penetrating version of caltubin was created for more efficient delivery of caltubin into cells in vitro, with the added capability of being able to efficiently deliver caltubin in vivo. Functionally, this protein promoted neurite outgrowth and short term regeneration in mammalian central neurons in culture, while increasing the stability of microtubules. Mechanistically, it was determined that caltubin (1) promotes the assembly of microtubules directly, and (2) interferes with the function of tubulin tyrosine ligase â an enzyme that catalyzes the retyrosination of tubulin â and thus may also indirectly affect tyrosination-sensitive mechanisms of microtubule regulation. Furthermore, it was determined that calcium: (1) binds to caltubin, (2) changes its conformation, (3) increases its binding to tubulin, and (4) enhances its effect on neurite outgrowth. Finally, specific caltubin-tubulin binding domains have been identified, as well as the caltubin functional domain that promotes neurite outgrowth. Taken together, it has been established that caltubin functions as an effective and regulatable enhancer of microtubule assembly and thus could potentially have therapeutic value as a neuroprotectant or enhancer of neuronal regeneration.Ph.D.2018-11-30 00:00:0

    A Peptide Comprising the Src-interacting Domain of NADH Dehydrogenase Subunit 2 Alleviates Complete Freund's Adjuvant-induced Allodynia in Rats

    No full text
    Inflammatory and neuropathic pains arise in part from sensitization at nociceptive synapses in the spinal cord. Activity-dependent signaling cascades converge onto the tyrosine kinase Src, which participates in augmenting the function of N-methyl-D-aspartate receptors (NMDARs) and thus potentiates the nociceptive system. Src is capable of these effects because it is anchored to the NMDAR complex via an adaptor protein called NADH dehydrogenase subunit 2 (ND2). There is evidence that this interaction occurs between amino acids 40-49 of Src and amino acids 310-321 of ND2. I have determined that a peptide consisting of amino acids 310-321 of ND2, and affixed to the HIV Tat domain for cell permeability, is capable of alleviating tactile allodynia induced by Complete Freund's Adjuvant (CFA) in rats. Src40-49Tat was not effective in two models of inflammatory pain. This work further implicates the Src-ND2 interaction in pain hypersensitivity and suggests that Tat ND2 310-321 may alleviate it.MAS

    Telomerase as a Prognostic Marker and Therapeutic Target in Paediatric Ependymoma

    No full text
    Paediatric ependymomas are the third most common childhood brain cancer and represent a prognostic and therapeutic challenge. Previous evidence suggests that telomerase, a ribonucleoprotein critical in permitting limitless growth potential, may serve as both a prognostic marker and therapeutic target. Immunohistochemical analysis (n=198) and enzymatic detection (n=25) of telomerase was performed to determine prevalence and prognostic potential. The telomerase inhibitor Imetelstat was used to study telomerase inhibition in paediatric ependymoma cell lines, tumour initiating cells (TICs) and both subcutaneous and intracranial xenografts. Telomerase activity was detected in 76% of primary ependymomas and was associated with a reduced five-year progression-free survival (30% vs 75%). Telomerase inhibition in vitro resulted in shortened telomeres, increased senescence, growth inhibition and reduced self-renewal capacity. In vivo, Imetelstat shortened telomeres and reduced subcutaneous tumour volume by 40% compared to control mice. Therefore, telomerase may serve as an ideal prognostic marker and therapeutic target in paediatric ependymoma.MAS

    Meta-Analysis of Serum Insulin-Like Growth Factor 1 in Alzheimer's Disease.

    No full text
    Insulin-like growth factor 1 (IGF-1) serum levels have been reported to be altered in Alzheimer's disease patients, and it was suggested that the changes in IGF-1 serum level may play a role in disease pathology and progression. However, this notion remained controversial due to conflicting findings. We conducted a meta-analysis to determine the relationship between IGF-1 serum levels and Alzheimer's disease. We searched the databases PUBMED, Ovid SP, and Cochrane library for relevant studies. The primary data analyzed was serum IGF-1 from Alzheimer's disease subjects and controls. Pooled weighted mean difference using a random effects model was used to determine the relationship between serum levels and disease state. Nine studies were included in the meta-analysis compromising a total of 1639 subjects. The pooled weighted mean difference was -2.27ng/ml (95% CI: [-22.221, 17.66]) with a P value of 0.82. Thus our finding did not show clear relationship between low IGF-1 and Alzheimer's disease subjects. We did not find evidence of publication bias by analyzing a funnel plot as well as Egger's and Begg's tests. While eight out of the nine studies included in this meta-analysis detected a statistically significant increase or decrease in serum levels of IGF-1 in Alzheimer's disease subjects, the analysis as a whole did not show a significant trend in either direction. Thus, IGF-1 level is likely a critical personalized factor. A large database of clinical trials is required for better understanding the relationship between IGF-1 levels and Alzheimer's disease
    corecore