101 research outputs found

    Population Genomics of the Immune Evasion (var) Genes of Plasmodium falciparum

    Get PDF
    Var genes encode the major surface antigen (PfEMP1) of the blood stages of the human malaria parasite Plasmodium falciparum. Differential expression of up to 60 diverse var genes in each parasite genome underlies immune evasion. We compared the diversity of the DBLα domain of var genes sampled from 30 parasite isolates from a malaria endemic area of Papua New Guinea (PNG) and 59 from widespread geographic origins (global). Overall, we obtained over 8,000 quality-controlled DBLα sequences. Within our sampling frame, the global population had a total of 895 distinct DBLα “types” and negligible overlap among repertoires. This indicated that var gene diversity on a global scale is so immense that many genomes would need to be sequenced to capture its true extent. In contrast, we found a much lower diversity in PNG of 185 DBLα types, with an average of approximately 7% overlap among repertoires. While we identify marked geographic structuring, nearly 40% of types identified in PNG were also found in samples from different countries showing a cosmopolitan distribution for much of the diversity. We also present evidence to suggest that recombination plays a key role in maintaining the unprecedented levels of polymorphism found in these immune evasion genes. This population genomic framework provides a cost effective molecular epidemiological tool to rapidly explore the geographic diversity of var genes

    Re-emergence of yaws after single mass azithromycin treatment followed by targeted treatment: a longitudinal study

    Get PDF
    Background: Yaws is a substantial cause of chronic disfiguring ulcers in children in at least 14 countries in the tropics. WHO's newly adopted strategy for yaws eradication uses a single round of mass azithromycin treatment followed by targeted treatment programmes, and data from pilot studies have shown a short-term significant reduction of yaws. We assessed the long-term efficacy of the WHO strategy for yaws eradication. Methods: Between April 15, 2013, and Oct 24, 2016, we did a longitudinal study on a Papua New Guinea island (Lihir; 16 092 population) in which yaws was endemic. In the initial study, the participants were followed for 12 months; in this extended follow-up study, clinical, serological, and PCR surveys were continued every 6 months for 42 months. We used genotyping and travel history to identify importation events. Active yaws confirmed by PCR specific for Treponema pallidum was the primary outcome indicator. The study is registered with ClinicalTrials.gov, number NCT01955252. Findings: Mass azithromycin treatment (coverage rate of 84%) followed by targeted treatment programmes reduced the prevalence of active yaws from 1·8% to a minimum of 0·1% at 18 months (difference from baseline −1·7%, 95% CI, −1·9 to −1·4; p<0·0001), but the infection began to re-emerge after 24 months with a significant increase to 0·4% at 42 months (difference from 18 months 0·3%, 95% CI 0·1 to 0·4; p<0·0001). At each timepoint after baseline, more than 70% of the total community burden of yaws was found in individuals who had not had the mass treatment or as new infections in non-travelling residents. At months 36 and 42, five cases of active yaws, all from the same village, showed clinical failure following azithromycin treatment, with PCR-detected mutations in the 23S ribosomal RNA genes conferring resistance to azithromycin. A sustained decrease in the prevalence of high-titre latent yaws from 13·7% to <1·5% in asymptomatic children aged 1–5 years old and of genetic diversity of yaws strains from 0·139 to less than 0·046 between months 24 and 42 indicated a reduction in transmission of infection. Interpretation: The implementation of the WHO strategy did not, in the long-term, achieve elimination in a high-endemic community mainly due to the individuals who were absent at the time of mass treatment in whom yaws reactivated; repeated mass treatment might be necessary to eliminate yaws. To our knowledge, this is the first report of the emergence of azithromycin-resistant T p pertenue and spread within one village. Communities' surveillance should be strengthened to detect any possible treatment failure and biological markers of resistance

    A Molecular Epidemiological Study of var Gene Diversity to Characterize the Reservoir of Plasmodium falciparum in Humans in Africa

    Get PDF
    BACKGROUND: The reservoir of Plasmodium infection in humans has traditionally been defined by blood slide positivity. This study was designed to characterize the local reservoir of infection in relation to the diverse var genes that encode the major surface antigen of Plasmodium falciparum blood stages and underlie the parasite's ability to establish chronic infection and transmit from human to mosquito. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the molecular epidemiology of the var multigene family at local sites in Gabon, Senegal and Kenya which differ in parasite prevalence and transmission intensity. 1839 distinct var gene types were defined by sequencing DBLα domains in the three sites. Only 76 (4.1%) var types were found in more than one population indicating spatial heterogeneity in var types across the African continent. The majority of var types appeared only once in the population sample. Non-parametric statistical estimators predict in each population at minimum five to seven thousand distinct var types. Similar diversity of var types was seen in sites with different parasite prevalences. CONCLUSIONS/SIGNIFICANCE: Var population genomics provides new insights into the epidemiology of P. falciparum in Africa where malaria has never been conquered. In particular, we have described the extensive reservoir of infection in local African sites and discovered a unique var population structure that can facilitate superinfection through minimal overlap in var repertoires among parasite genomes. Our findings show that var typing as a molecular surveillance system defines the extent of genetic complexity in the reservoir of infection to complement measures of malaria prevalence. The observed small scale spatial diversity of var genes suggests that var genetics could greatly inform current malaria mapping approaches and predict complex malaria population dynamics due to the import of var types to areas where no widespread pre-existing immunity in the population exists

    Contrasting Population Structures of the Genes Encoding Ten Leading Vaccine-Candidate Antigens of the Human Malaria Parasite, Plasmodium falciparum

    Get PDF
    The extensive diversity of Plasmodium falciparum antigens is a major obstacle to a broadly effective malaria vaccine but population genetics has rarely been used to guide vaccine design. We have completed a meta-population genetic analysis of the genes encoding ten leading P. falciparum vaccine antigens, including the pre-erythrocytic antigens csp, trap, lsa1 and glurp; the merozoite antigens eba175, ama1, msp's 1, 3 and 4, and the gametocyte antigen pfs48/45. A total of 4553 antigen sequences were assembled from published data and we estimated the range and distribution of diversity worldwide using traditional population genetics, Bayesian clustering and network analysis. Although a large number of distinct haplotypes were identified for each antigen, they were organized into a limited number of discrete subgroups. While the non-merozoite antigens showed geographically variable levels of diversity and geographic restriction of specific subgroups, the merozoite antigens had high levels of diversity globally, and a worldwide distribution of each subgroup. This shows that the diversity of the non-merozoite antigens is organized by physical or other location-specific barriers to gene flow and that of merozoite antigens by features intrinsic to all populations, one important possibility being the immune response of the human host. We also show that current malaria vaccine formulations are based upon low prevalence haplotypes from a single subgroup and thus may represent only a small proportion of the global parasite population. This study demonstrates significant contrasts in the population structure of P. falciparum vaccine candidates that are consistent with the merozoite antigens being under stronger balancing selection than non-merozoite antigens and suggesting that unique approaches to vaccine design will be required. The results of this study also provide a realistic framework for the diversity of these antigens to be incorporated into the design of next-generation malaria vaccines

    Genetic Variants For Head Size Share Genes and Pathways With Cancer

    Get PDF
    The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer

    An open dataset of Plasmodium falciparum genome variation in 7,000 worldwide samples.

    Get PDF
    MalariaGEN is a data-sharing network that enables groups around the world to work together on the genomic epidemiology of malaria. Here we describe a new release of curated genome variation data on 7,000 Plasmodium falciparum samples from MalariaGEN partner studies in 28 malaria-endemic countries. High-quality genotype calls on 3 million single nucleotide polymorphisms (SNPs) and short indels were produced using a standardised analysis pipeline. Copy number variants associated with drug resistance and structural variants that cause failure of rapid diagnostic tests were also analysed.  Almost all samples showed genetic evidence of resistance to at least one antimalarial drug, and some samples from Southeast Asia carried markers of resistance to six commonly-used drugs. Genes expressed during the mosquito stage of the parasite life-cycle are prominent among loci that show strong geographic differentiation. By continuing to enlarge this open data resource we aim to facilitate research into the evolutionary processes affecting malaria control and to accelerate development of the surveillance toolkit required for malaria elimination

    More than smell - COVID-19 is associated with severe impairment of smell, taste, and chemesthesis

    Get PDF
    Recent anecdotal and scientific reports have provided evidence of a link between COVID-19 and chemosensory impairments such as anosmia. However, these reports have downplayed or failed to distinguish potential effects on taste, ignored chemesthesis, generally lacked quantitative measurements, were mostly restricted to data from single countries. Here, we report the development, implementation and initial results of a multi-lingual, international questionnaire to assess self-reported quantity and quality of perception in three distinct chemosensory modalities (smell, taste, and chemesthesis) before and during COVID-19. In the first 11 days after questionnaire launch, 4039 participants (2913 women, 1118 men, 8 other, ages 19-79) reported a COVID-19 diagnosis either via laboratory tests or clinical assessment. Importantly, smell, taste and chemesthetic function were each significantly reduced compared to their status before the disease. Difference scores (maximum possible change+/-100) revealed a mean reduction of smell (-79.7+/- 28.7, mean+/- SD), taste (-69.0+/- 32.6), and chemesthetic (-37.3+/- 36.2) function during COVID-19. Qualitative changes in olfactory ability (parosmia and phantosmia) were relatively rare and correlated with smell loss. Importantly, perceived nasal obstruction did not account for smell loss. Furthermore, chemosensory impairments were similar between participants in the laboratory test and clinical assessment groups. These results show that COVID-19-associated chemosensory impairment is not limited to smell, but also affects taste and chemesthesis. The multimodal impact of COVID-19 and lack of perceived nasal obstruction suggest that SARS-CoV-2 infection may disrupt sensory-neural mechanisms.Additional co-authors: Veronica Pereda-Loth, Shannon B Olsson, Richard C Gerkin, Paloma Rohlfs DomĂ­nguez, Javier Albayay, Michael C. Farruggia, Surabhi Bhutani, Alexander W Fjaeldstad, Ritesh Kumar, Anna Menini, Moustafa Bensafi, Mari Sandell, Iordanis Konstantinidis, Antonella Di Pizio, Federica Genovese, Lina ÖztĂŒrk, Thierry Thomas-Danguin, Johannes Frasnelli, Sanne Boesveldt, Özlem Saatci, Luis R. Saraiva, Cailu Lin, JĂ©rĂŽme Golebiowski, Liang-Dar Hwang, Mehmet Hakan Ozdener, Maria Dolors GuĂ rdia, Christophe Laudamiel, Marina Ritchie, Jan HavlĂ­cek, Denis Pierron, Eugeni Roura, Marta Navarro, Alissa A. Nolden, Juyun Lim, KL Whitcroft, Lauren R. Colquitt, Camille Ferdenzi, Evelyn V. Brindha, Aytug Altundag, Alberto Macchi, Alexia Nunez-Parra, Zara M. Patel, SĂ©bastien Fiorucci, Carl M. Philpott, Barry C. Smith, Johan N Lundström, Carla Mucignat, Jane K. Parker, Mirjam van den Brink, Michael Schmuker, Florian Ph.S Fischmeister, Thomas Heinbockel, Vonnie D.C. Shields, Farhoud Faraji, Enrique Enrique SantamarĂ­a, William E.A. Fredborg, Gabriella Morini, Jonas K. Olofsson, Maryam Jalessi, Noam Karni, Anna D'Errico, Rafieh Alizadeh, Robert Pellegrino, Pablo Meyer, Caroline Huart, Ben Chen, Graciela M. Soler, Mohammed K. Alwashahi, Olagunju Abdulrahman, Antje Welge-LĂŒssen, Pamela Dalton, Jessica Freiherr, Carol H. Yan, Jasper H. B. de Groot, Vera V. Voznessenskaya, Hadar Klein, Jingguo Chen, Masako Okamoto, Elizabeth A. Sell, Preet Bano Singh, Julie Walsh-Messinger, Nicholas S. Archer, Sachiko Koyama, Vincent Deary, HĂŒseyin Yanik, Samet Albayrak, Lenka Martinec NovĂĄkov, Ilja Croijmans, Patricia Portillo Mazal, Shima T. Moein, Eitan Margulis, Coralie Mignot, Sajidxa Mariño, Dejan Georgiev, Pavan K. Kaushik, Bettina Malnic, Hong Wang, Shima Seyed-Allaei, Nur Yoluk, Sara Razzaghi, Jeb M. Justice, Diego Restrepo, Julien W Hsieh, Danielle R. Reed, Thomas Hummel, Steven D Munger, John E Haye

    Pf7: an open dataset of Plasmodium falciparum genome variation in 20,000 worldwide samples

    Get PDF
    We describe the MalariaGEN Pf7 data resource, the seventh release of Plasmodium falciparum genome variation data from the MalariaGEN network.  It comprises over 20,000 samples from 82 partner studies in 33 countries, including several malaria endemic regions that were previously underrepresented.  For the first time we include dried blood spot samples that were sequenced after selective whole genome amplification, necessitating new methods to genotype copy number variations.  We identify a large number of newly emerging crt mutations in parts of Southeast Asia, and show examples of heterogeneities in patterns of drug resistance within Africa and within the Indian subcontinent.  We describe the profile of variations in the C-terminal of the csp gene and relate this to the sequence used in the RTS,S and R21 malaria vaccines.  Pf7 provides high-quality data on genotype calls for 6 million SNPs and short indels, analysis of large deletions that cause failure of rapid diagnostic tests, and systematic characterisation of six major drug resistance loci, all of which can be freely downloaded from the MalariaGEN website
    • 

    corecore