5 research outputs found

    Pushing the analytical limits: new insights into complex mixtures using mass spectra segments of constant ultrahigh resolving power

    Get PDF
    A new strategy has been developed for characterization of the most challenging complex mixtures to date, using a combination of custom-designed experiments and a new data pre-processing algorithm. In contrast to traditional methods, the approach enables operation of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with constant ultrahigh resolution at hitherto inaccessible levels (approximately 3 million FWHM, independent of m/z). The approach, referred to as OCULAR, makes it possible to analyze samples that were previously too complex, even for high field FT-ICR MS instrumentation. Previous FT-ICR MS studies have typically spanned a broad mass range with decreasing resolving power (inversely proportional to m/z) or have used a single, very narrow m/z range to produce data of enhanced resolving power; both methods are of limited effectiveness for complex mixtures spanning a broad mass range, however. To illustrate the enhanced performance due to OCULAR, we show how a record number of unique molecular formulae (244 779 elemental compositions) can be assigned in a single, non-distillable petroleum fraction without the aid of chromatography or dissociation (MS/MS) experiments. The method is equally applicable to other areas of research, can be used with both high field and low field FT-ICR MS instruments to enhance their performance, and represents a step-change in the ability to analyze highly complex samples.This work was supported by a Newton Fund award (reference number 275910721), Research Agreement No. 5211770 UIS-ICP, and COLCIENCIAS (project No. FP44842-039-2015). Juan P. Arenas thanks COLCIENCIAS for the Scholarship. Rémy Gavard and Mary Thomas thank EPSRC for a PhD studentship through the EPSRC Centre for Doctoral Training in Molecular Analytical Science (grant number EP/L015307/1). David Rossell was partially supported by Ramon y Cajal Fellowship RYC-2015-18544 from Ministerio de Economia y Competitividad (Government of Spain) and by a "Ayudas Fundacion BBVA a Equipos de Investigacion Cientifica en Big Data 2017" award from the BBVA Foundation

    Data processing in fourier transform ion cyclotron resonance mass spectrometry

    No full text
    The Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer intricately couples advanced physics, instrumentation, and electronics with chemical and particularly biochemical research. However, general understanding of the data processing methodologies used lags instrumentation, and most data processing algorithms we are familiar with in FT-ICR are not well studied; thus, professional skill and training in FT-ICR operation and data analysis is still the key to achieve high performance in FT-ICR. This review article is focused on FT-ICR data processing, and explains the procedures step-by-step for users with the goal of maximizing spectral features, such as mass accuracy, resolving power, dynamic range, and detection limits. © 2014 Wiley Periodicals, Inc. Mass Spec Re

    Variation of the Fourier transform mass spectra phase function with experimental parameters

    No full text
    It has been known for almost 40 years that phase correction of Fourier transform ion cyclotron resonance (FTICR) data can generate an absorption-mode spectrum with much improved peak shape compared to the conventional magnitude-mode. However, research on phasing has been slow due to the complexity of the phase-wrapping problem. Recently, the method for phasing a broadband FTICR spectrum has been solved in the MS community which will surely resurrect this old topic. This paper provides a discussion on the data processing procedure of phase correction and features of the phase function based on both a mathematical treatment and experimental data. Finally, it is shown that the same phase function can be optimized by adding correction factors and can be applied from one experiment to another with different instrument parameters, regardless of the sample measured. Thus, in the vast majority of cases, the phase function needs to be calculated just once, whenever the instrument is calibrated

    The Biology of Vasopressin

    Get PDF
    Vasopressins are evolutionarily conserved peptide hormones. Mammalian vasopressin functions systemically as an antidiuretic and regulator of blood and cardiac flow essential for adapting to terrestrial environments. Moreover, vasopressin acts centrally as a neurohormone involved in social and parental behavior and stress response. Vasopressin synthesis in several cell types, storage in intracellular vesicles, and release in response to physiological stimuli are highly regulated and mediated by three distinct G protein coupled receptors. Other receptors may bind or cross-bind vasopressin. Vasopressin is regulated spatially and temporally through transcriptional and post-transcriptional mechanisms, sex, tissue, and cell-specific receptor expression. Anomalies of vasopressin signaling have been observed in polycystic kidney disease, chronic heart failure, and neuropsychiatric conditions. Growing knowledge of the central biological roles of vasopressin has enabled pharmacological advances to treat these conditions by targeting defective systemic or central pathways utilizing specific agonists and antagonists
    corecore