298 research outputs found
The NN2 Flux Difference Method for Constructing Variable Object Light Curves
We present a new method for optimally extracting point-source time
variability information from a series of images. Differential photometry is
generally best accomplished by subtracting two images separated in time, since
this removes all constant objects in the field. By removing background sources
such as the host galaxies of supernovae, such subtractions make possible the
measurement of the proper flux of point-source objects superimposed on extended
sources. In traditional difference photometry, a single image is designated as
the ``template'' image and subtracted from all other observations. This
procedure does not take all the available information into account and for
sub-optimal template images may produce poor results. Given N total
observations of an object, we show how to obtain an estimate of the vector of
fluxes from the individual images using the antisymmetric matrix of flux
differences formed from the N(N-1)/2 distinct possible subtractions and provide
a prescription for estimating the associated uncertainties. We then demonstrate
how this method improves results over the standard procedure of designating one
image as a ``template'' and differencing against only that image.Comment: Accepted to AJ. To be published in November 2005 issue. 16 page, 2
figures, 2 tables. Source code available at
http://www.ctio.noao.edu/essence/nn2
Redshift-Independent Distances to Type Ia Supernovae
We describe a procedure for accurately determining luminosity distances to
Type Ia supernovae (SNe Ia) without knowledge of redshift. This procedure,
which may be used as an extension of any of the various distance determination
methods currently in use, is based on marginalizing over redshift, removing the
requirement of knowing a priori. We demonstrate that the Hubble diagram
scatter of distances measured with this technique is approximately equal to
that of distances derived from conventional redshift-specific methods for a set
of 60 nearby SNe Ia. This indicates that accurate distances for cosmological
SNe Ia may be determined without the requirement of spectroscopic redshifts,
which are typically the limiting factor for the number of SNe that modern
surveys can collect. Removing this limitation would greatly increase the number
of SNe for which current and future SN surveys will be able to accurately
measure distance. The method may also be able to be used for high- SNe Ia to
determine cosmological density parameters without redshift information.Comment: 12 pages, 3 figures, accepted for publication in Astrophysical
Journal Letter
Cylindrical, periodic surface lattice — theory, dispersion analysis, and experiment
A two-dimensional surface lattice of cylindrical topology obtained via perturbing the inner surface of a cylinder is considered. Periodic perturbations of the surface lead to observation of high-impedance, dielectric-like media and resonant coupling of surface and non-propagating volume fields. This allows synthesis of tailored-for-purpose "coating" material with dispersion suitable, for instance, to mediate a Cherenkov type interaction. An analytical model of the lattice is discussed and coupled-wave equations are derived. Variations of the lattice dispersive properties with variation of parameters are shown, illustrating the tailoring of the structure's electromagnetic properties. Experimental results are presented showing agreement with the theoretical model
Naked Singularity in a Modified Gravity Theory
The cosmological constant induced by quantum fluctuation of the graviton on a
given background is considered as a tool for building a spectrum of different
geometries. In particular, we apply the method to the Schwarzschild background
with positive and negative mass parameter. In this way, we put on the same
level of comparison the related naked singularity (-M) and the positive mass
wormhole. We discuss how to extract information in the context of a f(R)
theory. We use the Wheeler-De Witt equation as a basic equation to perform such
an analysis regarded as a Sturm-Liouville problem . The application of the same
procedure used for the ordinary theory, namely f(R)=R, reveals that to this
approximation level, it is not possible to classify the Schwarzschild and its
naked partner into a geometry spectrum.Comment: 8 Pages. Contribution given to DICE 2008. To appear in the
proceeding
The Millimeter Astronomy Legacy Team 90 GHz (MALT90) Pilot Survey
We describe a pilot survey conducted with the Mopra 22-m radio telescope in
preparation for the Millimeter Astronomy Legacy Team Survey at 90 GHz (MALT90).
We identified 182 candidate dense molecular clumps using six different
selection criteria and mapped each source simultaneously in 16 different lines
near 90 GHz. We present a summary of the data and describe how the results of
the pilot survey shaped the design of the larger MALT90 survey. We motivate our
selection of target sources for the main survey based on the pilot detection
rates and demonstrate the value of mapping in multiple lines simultaneously at
high spectral resolution.Comment: Accepted to ApJS. 23 pages and 16 figures. Full resolution version
with an appendix showing all the data (12.1 MB) is available at
http://malt90.bu.edu/publications/Foster_2011_Malt90Pilot.pd
Stars of extragalactic origin in the solar neighborhood
We computed the spatial velocities and the galactic orbital elements using
Hipparcos data for 77 nearest main-sequence F-G-stars with published the iron,
magnesium, and europium abundances determined from high dispersion spectra and
with the ages estimated from theoretical isochrones. A comparison with the
orbital elements of the globular clusters that are known was accreted by our
Galaxy in the past reveals stars of extragalactic origin. We show that the
relative elemental abundance ratios of r- and \alpha- elements in all the
accreted stars differ sharply from those in the stars that are genetically
associated with the Galaxy. According to current theoretical models, europium
is produced mainly in low mass Type II supernovae (SNe II), while magnesium is
synthesized in larger amounts in high mass SN II progenitors. Since all the old
accreted stars of our sample exhibit a significant Eu overabundance relative to
Mg, we conclude that the maximum masses of the SNII progenitors outside the
Galaxy were much lower than those inside it are. On the other hand, only a
small number of young accreted stars exhibit low negative ratios .
The delay of primordial star formation burst and the explosions of high mass
SNe II in a relatively small part of extragalactic space can explain this
situation. We provide evidence that the interstellar medium was weakly mixed at
the early evolutionary stages of the Galaxy formed from a single proto-galactic
cloud and that the maximum mass of the SN II progenitors increased in it with
time simultaneously with the increase in mean metallicity.Comment: Accepted for 2004, Astronomy Letters, Vol. 30, No. 3, P.148-158 15
pages, 3 figure
Testing non-standard cosmological models with supernovae
In this work we study the magnitude-redshift relation of a non-standard
cosmological model. The model under consideration was firstly investigated
within a special case of metric-affine gravity (MAG) and was recently recovered
via different approaches by two other groups. Apart from the usual cosmological
parameters for pressure-less matter , cosmological
constant/dark energy , and radiation a new
density parameter emerges. The field equations of the model
reduce to a system which is effectively given by the usual Friedmann equations
of general relativity, supplied by a correction to the energy density and
pressure in form of , which is related to the non-Riemannian
structure of the underlying spacetime. We search for the best-fit parameters by
using recent SN Ia data sets and constrain the possible contribution of a new
dark-energy like component at low redshifts, thereby we put an upper limit on
the presence of non-Riemannian quantities in the late stages of the universe.
In addition the impact of placing the data in redshift bins of variable size is
studied. The numerical results of this work also apply to several anisotropic
cosmological models which, on the level of the field equations, exhibit a
similar scaling behavior of the density parameters like our non-Riemannian
model.Comment: 21 pages, 10 figures, uses IOP preprint style, submitted to Class.
Quantum Gra
Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey
We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to
search for dependencies between SN Ia properties and the projected distance to
the host galaxy center, using the distance as a proxy for local galaxy
properties (local star-formation rate, local metallicity, etc.). The sample
consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at
redshifts below 0.25. The sample is split into two groups depending on the
morphology of the host galaxy. We fit light-curves using both MLCS2k2 and
SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters
for each SN Ia, as well as its residual in the Hubble diagram. We then
correlate these parameters with both the physical and the normalized distances
to the center of the host galaxy and look for trends in the mean values and
scatters of these parameters with increasing distance. The most significant (at
the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c
from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies.
We also find indications that SNe in elliptical galaxies tend to have narrower
light-curves if they explode at larger distances, although this may be due to
selection effects in our sample. We do not find strong correlations between the
residuals of the distance moduli with respect to the Hubble flow and the
galactocentric distances, which indicates a limited correlation between SN
magnitudes after standardization and local host metallicity.Comment: Accepted for publication in The Astrophysical Journal (33 pages, 5
figures, 8 tables
Cosmological Results from High-z Supernovae
The High-z Supernova Search Team has discovered and observed 8 new supernovae
in the redshift interval z=0.3-1.2. These independent observations, confirm the
result of Riess et al. (1998a) and Perlmutter et al. (1999) that supernova
luminosity distances imply an accelerating universe. More importantly, they
extend the redshift range of consistently observed SN Ia to z~1, where the
signature of cosmological effects has the opposite sign of some plausible
systematic effects. Consequently, these measurements not only provide another
quantitative confirmation of the importance of dark energy, but also constitute
a powerful qualitative test for the cosmological origin of cosmic acceleration.
We find a rate for SN Ia of 1.4+/-0.5E-04 h^3/Mpc^3/yr at a mean redshift of
0.5. We present distances and host extinctions for 230 SN Ia. These place the
following constraints on cosmological quantities: if the equation of state
parameter of the dark energy is w=-1, then H0 t0 = 0.96+/-0.04, and O_l - 1.4
O_m = 0.35+/-0.14. Including the constraint of a flat Universe, we find O_m =
0.28+/-0.05, independent of any large-scale structure measurements. Adopting a
prior based on the 2dF redshift survey constraint on O_m and assuming a flat
universe, we find that the equation of state parameter of the dark energy lies
in the range -1.48-1,
we obtain w<-0.73 at 95% confidence. These constraints are similar in precision
and in value to recent results reported using the WMAP satellite, also in
combination with the 2dF redshift survey.Comment: 50 pages, AAS LateX, 15 figures, 15 tables. Accepted for publication
by Astrophysical Journa
- …
