13 research outputs found

    Efficacy of a Laser Device for Hazing Canada Geese from Urban Areas of Northeast Ohio

    Get PDF
    Author Institution: Ohio Department of Natural Resources, Division of Wildlife, Crane Creek Wildlife Research Station ; US Department of Agriculture, APHIS, Wildlife ServicesComplaints about Canada geese in Ohio have increased nearly 400% in the past decade, with 732 recorded in 2001. Harassment techniques such as pyrotechnics and mylar flagging have been used to reduce goose conflicts but are frequently ineffective, and initial experiments indicated that laser harassment may disperse Canada geese. We evaluated whether lasers could cause geese to abandon urban sites, the duration of site abandonment, and dispersal distance of harassed geese. One hundred ninety geese were banded and collared in June 2001 at 6 sites in northeast Ohio. Radio transmitters were attached to 40 collars. We conducted nocturnal laser harassment of geese in four 5-day periods from July 2001 through January 2002 at 3 treatment sites. No harassment occurred at 3 control sites. One-day surveys of collared geese were conducted 2 weeks prior to the 5-day hazing period, during the hazing period, and 2 weeks post-hazing. Geese were located through radio telemetry using air- and ground-based receivers during all 3 time periods. Laser harassment caused geese to leave the site after a mean of 4.6 (SE = 0.8) minutes of treatment. Over the 5-day treatment period, the mean number of geese observed at night decreased from 92 to 14; however, we found no differences between numbers of geese observed 2 weeks prior to initial harassment and those observed post-harassment. Telemetry indicated that geese moved <2.0 km from all but one banding site. Laser harassment was more effective in reducing goose numbers at night rather than reducing numbers during the day. Site characteristics such as ambient lighting, human disturbance, and size of pond appeared to be the primary factors determining the laser’s effectiveness

    Wildlife Damage to Seedlings in Reforested in Hardwood Sites in Mississippi

    Get PDF
    Herbivory assessments were conducted on seven reforested sites that were less than one year old in the following Mississippi counties: Bolivar, Leflore, and Attala. At each site, 100ft. x 100 ft. plots were established and randomly selected seedlings were marked and measured to determine seedling species, height, condition, survival, and type and extent of animal feeding sign. Surveys were conducted in March/April, May, and August 2004. Herbivory rates were highest during May with approximately 47% of seedlings showing signs of herbivory. In March/ April and August, the percentage of seedlings exhibiting signs of herbivory was 37% and 30%, respectively. Foraging by white-tailed deer (Odocoileus virginianus) was recorded on \u3e 90% of the damaged seedlings during each survey. Tree mortality for all study sites and tree species was negligible, with the highest amount (7%) recorded during August, despite the recorded rates of herbivory by white-tailed deer. Herbivory by rabbits (Sylvilagus spp.) and rodents occurred on approximately 6% of the seedlings throughout the 2004 growing season

    The 3-Hydroxy-2-Butanone Pathway Is Required for Pectobacterium carotovorum Pathogenesis

    Get PDF
    Pectobacterium species are necrotrophic bacterial pathogens that cause soft rot diseases in potatoes and several other crops worldwide. Gene expression data identified Pectobacterium carotovorum subsp. carotovorum budB, which encodes the α-acetolactate synthase enzyme in the 2,3-butanediol pathway, as more highly expressed in potato tubers than potato stems. This pathway is of interest because volatiles produced by the 2,3-butanediol pathway have been shown to act as plant growth promoting molecules, insect attractants, and, in other bacterial species, affect virulence and fitness. Disruption of the 2,3-butanediol pathway reduced virulence of P. c. subsp. carotovorum WPP14 on potato tubers and impaired alkalinization of growth medium and potato tubers under anaerobic conditions. Alkalinization of the milieu via this pathway may aid in plant cell maceration since Pectobacterium pectate lyases are most active at alkaline pH

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Posttranslational Regulation of the Scaffold for Fe-S Cluster Biogenesis, Isu

    No full text
    Isu, the scaffold protein on which Fe-S clusters are built in the mitochondrial matrix, plays a central role in the biogenesis of Fe-S cluster proteins. We report that the reduction in the activity of several components of the cluster biogenesis system, including the specialized Hsp70 Ssq1, causes a 15–20-fold up-regulation of Isu. This up-regulation results from changes at both the transcriptional and posttranslational level: an increase in ISU mRNA levels and in stability of ISU protein. Its biological importance is demonstrated by the fact that cells lacking Ssq1 grow poorly when Isu levels are prevented from rising above those found in wild-type cells. Of the biogenesis factors tested, Nfs1, the sulfur donor, was unique. Little increase in Isu levels occurred when Nfs1 was depleted. However, its presence was required for the up-regulation caused by reduction in activity of other components. Our results are consistent with the existence of a mechanism to increase the stability of Isu, and thus its level, that is dependent on the presence of the cysteine desulfurase Nfs1
    corecore