64 research outputs found

    Antagonism between salicylate and the cAMP signal controls yeast cell survival and growth recovery from quiescence

    Get PDF
    Aspirin and its main metabolite salicylate are promising molecules in preventing cancer and metabolic diseases. S. cerevisiae cells have been used to study some of their effects: (i) salicylate induces the reversible inhibition of both glucose transport and the biosyntheses of glucose-derived sugar phosphates, (ii) Aspirin/salicylate causes apoptosis associated with superoxide radical accumulation or early cell necrosis in MnSOD-deficient cells growing in ethanol or in glucose, respectively. So, treatment with (acetyl)-salicylic acid can alter the yeast metabolism and is associated with cell death. We describe here the dramatic effects of salicylate on cellular control of the exit from a quiescence state. The growth recovery of long-term stationary phase cells was strongly inhibited in the presence of salicylate, to a degree proportional to the drug concentration. At high salicylate concentration, growth reactivation was completely repressed and associated with a dramatic loss of cell viability. Strikingly, both of these phenotypes were fully suppressed by increasing the cAMP signal without any variation of the exponential growth rate. Upon nutrient exhaustion, salicylate induced a premature lethal cell cycle arrest in the budded-G2/M phase that cannot be suppressed by PKA activation. We discuss how the dramatic antagonism between cAMP and salicylate could be conserved and impinge common targets in yeast and humans. Targeting quiescence of cancer cells with stem-like properties and their growth recovery from dormancy are major challenges in cancer therapy. If mechanisms underlying cAMP-salicylate antagonism will be defined in our model, this might have significant therapeutic implications

    Years of life that could be saved from prevention of hepatocellular carcinoma

    Get PDF
    BACKGROUND: Hepatocellular carcinoma (HCC) causes premature death and loss of life expectancy worldwide. Its primary and secondary prevention can result in a significant number of years of life saved. AIM: To assess how many years of life are lost after HCC diagnosis. METHODS: Data from 5346 patients with first HCC diagnosis were used to estimate lifespan and number of years of life lost after tumour onset, using a semi-parametric extrapolation having as reference an age-, sex- and year-of-onset-matched population derived from national life tables. RESULTS: Between 1986 and 2014, HCC lead to an average of 11.5 years-of-life lost for each patient. The youngest age-quartile group (18-61 years) had the highest number of years-of-life lost, representing approximately 41% of the overall benefit obtainable from prevention. Advancements in HCC management have progressively reduced the number of years-of-life lost from 12.6 years in 1986-1999, to 10.7 in 2000-2006 and 7.4 years in 2007-2014. Currently, an HCC diagnosis when a single tumour <2 cm results in 3.7 years-of-life lost while the diagnosis when a single tumour 65 2 cm or 2/3 nodules still within the Milan criteria, results in 5.0 years-of-life lost, representing the loss of only approximately 5.5% and 7.2%, respectively, of the entire lifespan from birth. CONCLUSIONS: Hepatocellular carcinoma occurrence results in the loss of a considerable number of years-of-life, especially for younger patients. In recent years, the increased possibility of effectively treating this tumour has improved life expectancy, thus reducing years-of-life lost

    Clinical patterns of hepatocellular carcinoma in nonalcoholic fatty liver disease: A multicenter prospective study

    Get PDF
    107noNonalcoholic fatty liver disease (NAFLD) represents the hepatic manifestation of metabolic syndrome and may evolve into hepatocellular carcinoma (HCC). Only scanty clinical information is available on HCC in NAFLD. The aim of this multicenter observational prospective study was to assess the clinical features of patients with NAFLD-related HCC (NAFLD-HCC) and to compare them to those of hepatitis C virus (HCV)-related HCC. A total of 756 patients with either NAFLD (145) or HCV-related chronic liver disease (611) were enrolled in secondary care Italian centers. Survival was modeled according to clinical parameters, lead-time bias, and propensity analysis. Compared to HCV, HCC in NAFLD patients had a larger volume, showed more often an infiltrative pattern, and was detected outside specific surveillance. Cirrhosis was present in only about 50% of NAFLD-HCC patients, in contrast to the near totality of HCV-HCC. Regardless of tumor stage, survival was significantly shorter (P = 0.017) in patients with NAFLD-HCC, 25.5 months (95% confidence interval 21.9-29.1), than in those with HCV-HCC, 33.7 months (95% confidence interval 31.9-35.4). To eliminate possible confounders, a propensity score analysis was performed, which showed no more significant difference between the two groups. Additionally, analysis of patients within Milan criteria submitted to curative treatments did not show any difference in survival between NAFLD-HCC and HCV-HCC (respectively, 38.6 versus 41.0 months, P = nonsignificant) Conclusions: NAFLD-HCC is more often detected at a later tumor stage and could arise also in the absence of cirrhosis, but after patient matching, it has a similar survival rate compared to HCV infection; a future challenge will be to identify patients with NAFLD who require more stringent surveillance in order to offer the most timely and effective treatment. (Hepatology 2016;63:827-838)openopenPiscaglia F.; Svegliati-Baroni G.; Barchetti A.; Pecorelli A.; Marinelli S.; Tiribelli C.; Bellentani S.; Bernardi M.; Biselli M.; Caraceni P.; Domenicali M.; Garuti F.; Gramenzi A.; Lenzi B.; Magalotti D.; Cescon M.; Ravaioli M.; Del Poggio P.; Olmi S.; Rapaccini G.L.; Balsamo C.; Di Nolfo M.A.; Vavassori E.; Alberti A.; Benvegnau L.; Gatta A.; Giacomin A.; Vanin V.; Pozzan C.; Maddalo G.; Giampalma E.; Cappelli A.; Golfieri R.; Mosconi C.; Renzulli M.; Roselli P.; Dell'isola S.; Ialungo A.M.; Risso D.; Marenco S.; Sammito G.; Bruzzone L.; Bosco G.; Grieco A.; Pompili M.; Rinninella E.; Siciliano M.; Chiaramonte M.; Guarino M.; Camma C.; Maida M.; Costantino A.; Barcellona M.R.; Schiada L.; Gemini S.; Lanzi A.; Stefanini G.F.; Dall'aglio A.C.; Cappa F.M.; Suzzi A.; Mussetto A.; Treossi O.; Missale G.; Porro E.; Mismas V.; Vivaldi C.; Bolondi L.; Zoli M.; Granito A.; Malagotti D.; Tovoli F.; Trevisani F.; Venerandi L.; Brandi G.; Cucchetti A.; Bugianesi E.; Vanni E.; Mezzabotta L.; Cabibbo G.; Petta S.; Fracanzani A.; Fargion S.; Marra F.; Fani B.; Biasini E.; Sacco R.; Morisco F.; Caporaso N.; Colombo M.; D'ambrosio R.; Croce L.S.; Patti R.; Giannini E.G.; Loria P.; Lonardo A.; Baldelli E.; Miele L.; Farinati F.; Borzio M.; Dionigi E.; Soardo G.; Caturelli E.; Ciccarese F.; Virdone R.; Affronti A.; Foschi F.G.; Borzio F.Piscaglia, F.; Svegliati-Baroni, G.; Barchetti, A.; Pecorelli, A.; Marinelli, S.; Tiribelli, C.; Bellentani, S.; Bernardi, M.; Biselli, M.; Caraceni, P.; Domenicali, M.; Garuti, F.; Gramenzi, A.; Lenzi, B.; Magalotti, D.; Cescon, M.; Ravaioli, M.; Del Poggio, P.; Olmi, S.; Rapaccini, G. L.; Balsamo, C.; Di Nolfo, M. A.; Vavassori, E.; Alberti, A.; Benvegnau, L.; Gatta, A.; Giacomin, A.; Vanin, V.; Pozzan, C.; Maddalo, G.; Giampalma, E.; Cappelli, A.; Golfieri, R.; Mosconi, C.; Renzulli, M.; Roselli, P.; Dell'Isola, S.; Ialungo, A. M.; Risso, D.; Marenco, S.; Sammito, G.; Bruzzone, L.; Bosco, G.; Grieco, A.; Pompili, M.; Rinninella, E.; Siciliano, M.; Chiaramonte, M.; Guarino, M.; Camma, C.; Maida, M.; Costantino, A.; Barcellona, M. R.; Schiada, L.; Gemini, S.; Lanzi, A.; Stefanini, G. F.; Dall'Aglio, A. C.; Cappa, F. M.; Suzzi, A.; Mussetto, A.; Treossi, O.; Missale, G.; Porro, E.; Mismas, V.; Vivaldi, C.; Bolondi, L.; Zoli, M.; Granito, A.; Malagotti, D.; Tovoli, F.; Trevisani, F.; Venerandi, L.; Brandi, G.; Cucchetti, A.; Bugianesi, E.; Vanni, E.; Mezzabotta, L.; Cabibbo, G.; Petta, S.; Fracanzani, A.; Fargion, S.; Marra, F.; Fani, B.; Biasini, E.; Sacco, R.; Morisco, F.; Caporaso, N.; Colombo, M.; D'Ambrosio, R.; Croce, L. S.; Patti, R.; Giannini, E. G.; Loria, P.; Lonardo, A.; Baldelli, E.; Miele, L.; Farinati, F.; Borzio, M.; Dionigi, E.; Soardo, G.; Caturelli, E.; Ciccarese, F.; Virdone, R.; Affronti, A.; Foschi, F. G.; Borzio, F

    The Reference Site Collaborative Network of the European Innovation Partnership on Active and Healthy Ageing

    Get PDF

    The polymorphism L412F in TLR3 inhibits autophagy and is a marker of severe COVID-19 in males

    Get PDF
    The polymorphism L412F in TLR3 has been associated with several infectious diseases. However, the mechanism underlying this association is still unexplored. Here, we show that the L412F polymorphism in TLR3 is a marker of severity in COVID-19. This association increases in the sub-cohort of males. Impaired macroautophagy/autophagy and reduced TNF/TNFα production was demonstrated in HEK293 cells transfected with TLR3L412F-encoding plasmid and stimulated with specific agonist poly(I:C). A statistically significant reduced survival at 28 days was shown in L412F COVID-19 patients treated with the autophagy-inhibitor hydroxychloroquine (p = 0.038). An increased frequency of autoimmune disorders such as co-morbidity was found in L412F COVID-19 males with specific class II HLA haplotypes prone to autoantigen presentation. Our analyses indicate that L412F polymorphism makes males at risk of severe COVID-19 and provides a rationale for reinterpreting clinical trials considering autophagy pathways. Abbreviations: AP: autophagosome; AUC: area under the curve; BafA1: bafilomycin A1; COVID-19: coronavirus disease-2019; HCQ: hydroxychloroquine; RAP: rapamycin; ROC: receiver operating characteristic; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; TLR: toll like receptor; TNF/TNF-α: tumor necrosis factor

    Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19

    Get PDF
    Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage

    A genome-wide association study for survival from a multi-centre European study identified variants associated with COVID-19 risk of death

    Get PDF
    : The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 × 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 × 10-8). A total of 113 variants were associated with survival at P-value < 1.0 × 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways

    Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

    Get PDF
    The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management. © 2021, The Author(s)

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore