66 research outputs found
Strange Particle Production in p+p, p+Pb and Pb+Pb Interactions from NA49
Recent NA49 results on Lambda, Antilambda, Xi- and Antixi+ production in
minimum bias p+p and centrality selected p+Pb collisions at 158 GeV/c, and the
results on Lambda, Antilambda, K+ and K- production in central Pb+Pb collisions
at 40, 80 and 158 A GeV are discussed and compared with other available data.
By comparing the energy dependence of Lambda and Antilambda production at
mid-rapidity a striking similarity is observed between p+p and A+A data. This
is also seen in the energy dependence of the Lambda/pi ratio. K+/pi at
mid-rapidity is affected in a similar way, due to the associated production of
K+ together with Lambda particles. The observed yields increase faster than the
number of wounded nucleons when comparing p+Pb to p+p. As already observed in
A+A collisions, the increase is larger for multistrange than for strange
baryons and for baryons than for anti-baryons.Comment: 8 pages, 10 figures, To appear in proceedings of Strange Quark in
Matter 2001-A Flavourspace Odyssey, Frankfurt am Main, Germany, 24-29. Sept.
200
Bulk properties and flow
In this report, I summarize the experimental results on {\bf bulk properties
and flow} presented at Quark Matter 2004. It is organized in four sections: 1)
Initial condition and stopping; 2) Particle spectra and freeze-outs; 3)
Anisotropic flow; 4) Outlook for future measurements.Comment: 10 pages, 4 figures, "Rapporteur-Conference Highlights", Quark Matter
2004, Oakland, January 11-1
K*(892)0 Production in Relativistic Heavy Ion Collisions at sqrt(s_NN) = 130 GeV
Preliminary results on the K*(892)0 -> pi + K production using the
mixed-event technique are presented. The measurements are performed at
mid-rapidity by the STAR detector in sqrt(s_NN) = 130 GeV Au-Au collisions at
RHIC. The K*0 to negative hadron, kaon and phi ratios are obtained and compared
to the measurements in e+e-, pp and pbarp at various energies.Comment: 8 pages, 3 figures, proceedings of Strange Quarks in Matter
(SQM2001), Frankfurt am Main, Germany, to be published in J. Phys.
CGC, QCD Saturation and RHIC data (Kharzeev-Levin-McLerran-Nardi point of view)
This is the talk given at the Workshop:"Focus on Multiplicitioes", Bari,
Italy, 17-19 June,2004.. In this talk, we are going to discuss ion-ion and
deuteron - nucleus RHIC data and show that they support, if not more, the idea
of the new QCD phase: colour glass condensate with saturated parton density. .Comment: 26 pages with 33 figure
An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement
The QCD phase diagram lies at the heart of what the RHIC Physics Program is
all about. While RHIC has been operating very successfully at or close to its
maximum energy for almost a decade, it has become clear that this collider can
also be operated at lower energies down to 5 GeV without extensive upgrades. An
exploration of the full region of beam energies available at the RHIC facility
is imperative. The STAR detector, due to its large uniform acceptance and
excellent particle identification capabilities, is uniquely positioned to carry
out this program in depth and detail. The first exploratory beam energy scan
(BES) run at RHIC took place in 2010 (Run 10), since several STAR upgrades,
most importantly a full barrel Time of Flight detector, are now completed which
add new capabilities important for the interesting physics at BES energies. In
this document we discuss current proposed measurements, with estimations of the
accuracy of the measurements given an assumed event count at each beam energy.Comment: 59 pages, 78 figure
Azimuthal anisotropy in Au+Au collisions at sqrtsNN = 200 GeV
The results from the STAR Collaboration on directed flow (v_1), elliptic flow
(v_2), and the fourth harmonic (v_4) in the anisotropic azimuthal distribution
of particles from Au+Au collisions at sqrtsNN = 200 GeV are summarized and
compared with results from other experiments and theoretical models. Results
for identified particles are presented and fit with a Blast Wave model.
Different anisotropic flow analysis methods are compared and nonflow effects
are extracted from the data. For v_2, scaling with the number of constituent
quarks and parton coalescence is discussed. For v_4, scaling with v_2^2 and
quark coalescence is discussed.Comment: 26 pages. As accepted by Phys. Rev. C. Text rearranged, figures
modified, but data the same. However, in Fig. 35 the hydro calculations are
corrected in this version. The data tables are available at
http://www.star.bnl.gov/central/publications/ by searching for "flow" and
then this pape
Charged and strange hadron elliptic flow in Cu+Cu collisions at = 62.4 and 200 GeV
We present the results of an elliptic flow analysis of Cu+Cu collisions
recorded with the STAR detector at 62.4 and 200GeV. Elliptic flow as a function
of transverse momentum is reported for different collision centralities for
charged hadrons and strangeness containing hadrons , ,
, in the midrapidity region . Significant reduction in
systematic uncertainty of the measurement due to non-flow effects has been
achieved by correlating particles at midrapidity, , with those at
forward rapidity, . We also present azimuthal correlations in
p+p collisions at 200 GeV to help estimating non-flow effects. To study the
system-size dependence of elliptic flow, we present a detailed comparison with
previously published results from Au+Au collisions at 200 GeV. We observe that
() of strange hadrons has similar scaling properties as were
first observed in Au+Au collisions, i.e.: (i) at low transverse momenta,
, scales with transverse kinetic energy, , and
(ii) at intermediate , , it scales with the number of
constituent quarks, . We have found that ideal hydrodynamic calculations
fail to reproduce the centrality dependence of () for
and . Eccentricity scaled values, , are larger
in more central collisions, suggesting stronger collective flow develops in
more central collisions. The comparison with Au+Au collisions which go further
in density shows depend on the system size, number of
participants . This indicates that the ideal hydrodynamic limit is
not reached in Cu+Cu collisions, presumably because the assumption of
thermalization is not attained.Comment: 18 pages, 14 figure
Measurements of meson production in relativistic heavy-ion collisions at RHIC
We present results for the measurement of meson production via its
charged kaon decay channel in Au+Au collisions at
, 130, and 200 GeV, and in and +Au collisions
at GeV from the STAR experiment at the BNL Relativistic
Heavy Ion Collider (RHIC). The midrapidity () meson transverse
momentum () spectra in central Au+Au collisions are found to be well
described by a single exponential distribution. On the other hand, the
spectra from , +Au and peripheral Au+Au collisions show power-law tails
at intermediate and high and are described better by Levy
distributions. The constant yield ratio vs beam species, collision
centrality and colliding energy is in contradiction with expectations from
models having kaon coalescence as the dominant mechanism for production
at RHIC. The yield ratio as a function of is consistent
with a model based on the recombination of thermal quarks up to GeV/, but disagrees at higher transverse momenta. The measured nuclear
modification factor, , for the meson increases above unity at
intermediate , similar to that for pions and protons, while is
suppressed due to the energy loss effect in central Au+Au collisions. Number of
constituent quark scaling of both and for the meson
with respect to other hadrons in Au+Au collisions at =200 GeV
at intermediate is observed. These observations support quark
coalescence as being the dominant mechanism of hadronization in the
intermediate region at RHIC.Comment: 22 pages, 21 figures, 4 table
Studying Parton Energy Loss in Heavy-Ion Collisions via Direct-Photon and Charged-Particle Azimuthal Correlations
Charged-particle spectra associated with direct photon () and
are measured in + and Au+Au collisions at center-of-mass energy
GeV with the STAR detector at RHIC. A hower-shape
analysis is used to partially discriminate between and .
Assuming no associated charged particles in the direction (near
side) and small contribution from fragmentation photons (), the
associated charged-particle yields opposite to (away side) are
extracted. At mid-rapidity () in central Au+Au collisions,
charged-particle yields associated with and at high
transverse momentum ( GeV/) are suppressed by a factor
of 3-5 compared with + collisions. The observed suppression of the
associated charged particles, in the kinematic range and GeV/, is similar for and , and
independent of the energy within uncertainties. These
measurements indicate that the parton energy loss, in the covered kinematic
range, is insensitive to the parton path length.Comment: submitted to Phys. Rev. Lett, 6 pages, 4 figure
Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions
Parity-odd domains, corresponding to non-trivial topological solutions of the
QCD vacuum, might be created during relativistic heavy-ion collisions. These
domains are predicted to lead to charge separation of quarks along the orbital
momentum of the system created in non-central collisions. To study this effect,
we investigate a three particle mixed harmonics azimuthal correlator which is a
\P-even observable, but directly sensitive to the charge separation effect. We
report measurements of this observable using the STAR detector in Au+Au and
Cu+Cu collisions at =200 and 62~GeV. The results are presented
as a function of collision centrality, particle separation in rapidity, and
particle transverse momentum. A signal consistent with several of the
theoretical expectations is detected in all four data sets. We compare our
results to the predictions of existing event generators, and discuss in detail
possible contributions from other effects that are not related to parity
violation.Comment: 17 pages, 14 figures, as accepted for publication in Physical Review
C
- …