882 research outputs found

    Effect of 50 Hz Electromagnetic Fields on the Induction of Heat-Shock Protein Gene Expression in Human Leukocytes

    Get PDF
    Although evidence is controversial, exposure to environmental power-frequency magnetic fields is of public concern. Cells respond to some abnormal physiological conditions by producing cytoprotective heat-shock (or stress) proteins. In this study, we determined whether exposure to power-frequency magnetic fields in the range 0–100 μT rms either alone or concomitant with mild heating induced heat-shock protein gene expression in human leukocytes, and we compared this response to that induced by heat alone. Samples of human peripheral blood were simultaneously exposed to a range of magnetic-field amplitudes using a regimen that was designed to allow field effects to be distinguished from possible artifacts due to the position of the samples in the exposure system. Power-frequency magnetic-field exposure for 4 h at 37°C had no detectable effect on expression of the genes encoding HSP27, HSP70A or HSP70B, as determined using reverse transcriptase-PCR, whereas 2 h at 42°C elicited 10-, 5- and 12-fold increases, respectively, in the expression of these genes. Gene expression in cells exposed to power-frequency magnetic fields at 40°C was not increased compared to cells incubated at 40°C without field exposure. These findings and the extant literature suggest that power-frequency electromagnetic fields are not a universal stressor, in contrast to physical agents such as heat

    Defect structures and torque on an elongated colloidal particle immersed in a liquid crystal host

    Full text link
    Combining molecular dynamics and Monte Carlo simulation we study defect structures around an elongated colloidal particle embedded in a nematic liquid crystal host. By studying nematic ordering near the particle and the disclination core region we are able to examine the defect core structure and the difference between two simulation techniques. In addition, we also study the torque on a particle tilted with respect to the director, and modification of this torque when the particle is close to the cell wall

    Cross-talk between GABAergic postsynapse and microglia regulate synapse loss after brain ischemia.

    Get PDF
    Microglia interact with neurons to facilitate synapse plasticity; however, signal(s) contributing to microglia activation for synapse elimination in pathology are not fully understood. Here, using in vitro organotypic hippocampal slice cultures and transient middle cerebral artery occlusion (MCAO) in genetically engineered mice in vivo, we report that at 24 hours after ischemia, microglia release brain-derived neurotrophic factor (BDNF) to downregulate glutamatergic and GABAergic synapses within the peri-infarct area. Analysis of the cornu ammonis 1 (CA1) in vitro shows that proBDNF and mBDNF downregulate glutamatergic dendritic spines and gephyrin scaffold stability through p75 neurotrophin receptor (p75 <sup>NTR</sup> ) and tropomyosin receptor kinase B (TrkB) receptors, respectively. After MCAO, we report that in the peri-infarct area and in the corresponding contralateral hemisphere, similar neuroplasticity occurs through microglia activation and gephyrin phosphorylation at serine-268 and serine-270 in vivo. Targeted deletion of the Bdnf gene in microglia or GphnS268A/S270A (phospho-null) point mutations protects against ischemic brain damage, neuroinflammation, and synapse downregulation after MCAO

    Search for the Rare Decay KL --> pi0 ee

    Full text link
    The KTeV/E799 experiment at Fermilab has searched for the rare kaon decay KL--> pi0ee. This mode is expected to have a significant CP violating component. The measurement of its branching ratio could support the Standard Model or could indicate the existence of new physics. This letter reports new results from the 1999-2000 data set. One event is observed with an expected background at 0.99 +/- 0.35 events. We set a limit on the branching ratio of 3.5 x 10^(-10) at the 90% confidence level. Combining the results with the dataset taken in 1997 yields the final KTeV result: BR(KL --> pi0 ee) < 2.8 x 10^(-10) at 90% CL.Comment: 4 pages, three figure

    Airborne quantification of net methane and carbon dioxide fluxes from European Arctic wetlands in Summer 2019

    Get PDF
    Arctic wetlands and surrounding ecosystems are both a significant source of methane (CH4) and a sink of carbon dioxide (CO2) during summer months. However, precise quantification of this regional CH4 source and CO2 sink remains poorly characterized. A research flight using the UK Facility for Airborne Atmospheric Measurement was conducted in July 2019 over an area (approx. 78 000 km2) of mixed peatland and forest in northern Sweden and Finland. Area-averaged fluxes of CH4 and carbon dioxide were calculated using an aircraft mass balance approach. Net CH4 fluxes normalized to wetland area ranged between 5.93 ± 1.87 mg m−2 h−1 and 4.44 ± 0.64 mg m−2 h−1 (largest to smallest) over the region with a meridional gradient across three discrete areas enclosed by the flight survey. From largest to smallest, net CO2 sinks ranged between −513 ± 74 mg m−2 h−1 and −284 ± 89 mg m−2 h−1 and result from net uptake of CO2 by vegetation and soils in the biosphere. A clear gradient of decreasing bulk and area-averaged CH4 flux was identified from north to south across the study region, correlated with decreasing peat bog land area from north to south identified from CORINE land cover classifications. While N2O mole fraction was measured, no discernible gradient was measured over the flight track, but a minimum flux threshold using this mass balance method was calculated. Bulk (total area) CH4 fluxes determined via mass balance were compared with area-weighted upscaled chamber fluxes from the same study area and were found to agree well within measurement uncertainty. The mass balance CH4 fluxes were found to be significantly higher than the CH4 fluxes reported by many land-surface process models compiled as part of the Global Carbon Project. There was high variability in both flux distribution and magnitude between the individual models. This further supports previous studies that suggest that land-surface models are currently ill-equipped to accurately capture carbon fluxes inthe region

    A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses

    Get PDF
    We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change
    corecore