375 research outputs found

    Materials properties of pharmaceutical formulations for thin-film-tablet continuous manufacturing

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2012.Page 43 blank. Cataloged from PDF version of thesis.Includes bibliographical references (p. 41-42).The development of manufacturing tablets in a continuous way has been possible greatly to the fabrication of polymer based thin-films. It is estimated that the pharmaceutical industry loses as much as a 25% on revenues based on the currently employed batch manufacturing method. Here we studied a continuous way of manufacturing tablets based on API/based polymer formulations that are cast and subsequently rolled into a tablet. Selections of two active pharmaceutical ingredients (SPP-100 and Acetaminophen) were studied into how well it forms mechanical robust, chemical and physical compatible HPMC polymer based films. As well, HPMC polymer based films with no drug loading were compared to measure out the dispersion of the drug on the film. Physiochemical studies were performed by DSC, XRD, FT-IR, and SEM. Moisture content was measured out by Karl Fischer Titration and mechanical properties such as tensile strength were measured for all API/HPMC and placebo films. It was found that the mechanical and physiochemical properties of SPP-100/HPMC films were regarded as the most promising thin film tablet candidate and it is further being tested for other mechanical properties such as bonding, friction, and compression.by Jose R. Barcena.S.B

    Pre-operative portal vein ligation and MSC injection in a rat model

    Get PDF
    https://openworks.mdanderson.org/sumexp23/1047/thumbnail.jp

    Fabrication of radiopaque, drug loaded resorbable inferior vena cava filters

    Get PDF
    https://openworks.mdanderson.org/sumexp23/1073/thumbnail.jp

    Innovative Thermal Management Concepts and Material Solutions for Future Space Vehicles

    Get PDF
    When entering a planetary atmosphere, space vehicles are exposed to extreme thermal loads. To protect the vehicle’s interior, a thermal protection system is required. Future aerospace transportation demands solutions that exceed the performance of current systems and up-to-date material limits. Therefore, new and disruptive solutions must be envisaged to meet those extreme conditions. In the search of new solutions for sharp leading edges of future hypersonic reentry or transport vehicles, the THOR project, composed of eight European organizations (industries, research centers, and universities) and one Japanese Agency (Japan Aerospace Exploration Agency), is actively working on definition, design, implementation, and simulation of new passive and active thermal management solutions and their verification in relevant environments (high-enthalpy facilities). This paper provides an overview of the recent developments on the four concepts that are targeted in the project, applying different physical methodologies: 1) passive cooling using highly conductive carbon-based fibers, 2) passive cooling with intensive internal radiative exchange, 3) active cooling based on convection heat transfer using a ceramic sandwich/thermal protection system with ceramic foams/lattices, and 4) active transpiration cooling of external surfaces. Details on these thermal management concepts, requirements from end users, and test configurations, as well as results from experimental and numerical verification, are given

    The Borrelia afzelii outer membrane protein BAPKO_0422 binds human Factor-H and is predicted to form a membrane-spanning beta-barrel

    Get PDF
    The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a Spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The OmpA domain is an eight-stranded membrane-spanning β-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work we describe the identification of four novel OmpA-like β-barrels from Borrelia afzelii, the most common cause of erythema migrans rash in Europe. Structural characterisation of one these proteins (BAPKO_0422) by small angle X-ray scattering (SAXS) and circular dichroism indicate a compact globular structure rich in β-strand consistent with a monomeric β-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25 x 45 Å. Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal Phe residue commonly found in Proteobacterial OM proteins is replaced by Ile/Leu or Asn. BAPKO_0422 is demonstrated to bind human factor-H and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value

    Self-Assembly of the Recombinant Capsid Protein of a Swine Norovirus into Virus-Like Particles and Evaluation of Monoclonal Antibodies Cross-Reactive with a Human Strain from Genogroup II

    Get PDF
    Noroviruses (NoVs) are responsible for the majority of gastroenteritis outbreaks in humans. Recently, NoV strains which are genetically closely related to human genogroup II (GII) NoVs have been detected in fecal specimens from swine. These findings have raised concern about the possible role of pigs as reservoirs for NoVs that could infect humans. To better understand the epidemiology of swine NoVs in both the swine and the human populations, rapid immunoassays are needed. In this study, baculovirus recombinants were generated to express the capsid gene of a swine NoV GII genotype 11 (GII.11) strain which self-assembled into virus-like particles (VLPs). Subsequently, the purified VLPs were used to evoke monoclonal antibodies (MAbs) in mice. A panel of eight promising MAbs was obtained and evaluated for their ability to bind to heterologous VLPs, denaturated antigens, and truncated capsid proteins. The MAbs could be classified into two groups: two MAbs that recognized linear epitopes located at the amino-terminal half (shell domain) of the swine NoV GII.11 VLPs and that cross-reacted with human GII.4 NoV VLPs. The other six MAbs bound to conformational epitopes and did not cross-react with the human GII.4 VLPs. To our knowledge, this is the first report on the characterization of MAbs against swine NoVs. The swine NoV VLPs and the MAbs described here may be further used for the design of diagnostic reagents that could help increase our knowledge of the prevalence of NoV infections in pigs and the possible role of pigs as reservoirs for NoVs

    Measurement and Modeling of Particle Radiation in Coal Flames

    Get PDF
    This work aims at developing a methodology that can provide information of in-flame particle radiation in industrial-scale flames. The method is based on a combination of experimental and modeling work. The experiments have been performed in the high-temperature zone of a 77 kWth swirling lignite flame. Spectral radiation, total radiative intensity, gas temperature, and gas composition were measured, and the radiative intensity in the furnace was modeled with an axisymmetric cylindrical radiation model using Mie theory for the particle properties and a statistical narrow-band model for the gas properties. The in-flame particle radiation was measured with a Fourier transform infrared (FTIR) spectrometer connected to a water-cooled probe via fiber optics. In the cross-section of the flame investigated, the particles were found to be the dominating source of radiation. Apart from giving information about particle radiation and temperature, the methodology can also provide estimates of the amount of soot radiation and the maximum contribution from soot radiation compared to the total particle radiation. In the center position in the flame, the maximum contribution from soot radiation was estimated to be less than 40% of the particle radiation. As a validation of the methodology, the modeled total radiative intensity was compared to the total intensity measured with a narrow angle radiometer and the agreement in the results was good, supporting the validity of the used approach
    • …
    corecore