11,888 research outputs found

    Coexistence Curve Singularities at Critical End Points

    Full text link
    We report an extensive Monte Carlo study of critical end point behaviour in a symmetrical binary fluid mixture. On the basis of general scaling arguments, singular behaviour is predicted in the diameter of the liquid-gas coexistence curve as the critical end point is approached. The simulation results show clear evidence for this singularity, as well as confirming a previously predicted singularity in the coexistence chemical potential. Both singularities should be detectable experimentally.Comment: 9 pages Revtex, 3 figures. To appear in Phys. Rev. Let

    Diffusion anomaly and dynamic transitions in the Bell-Lavis water model

    Full text link
    In this paper we investigate the dynamic properties of the minimal Bell-Lavis (BL) water model and their relation to the thermodynamic anomalies. The Bell-Lavis model is defined on a triangular lattice in which water molecules are represented by particles with three symmetric bonding arms interacting through van der Waals and hydrogen bonds. We have studied the model diffusivity in different regions of the phase diagram through Monte Carlo simulations. Our results show that the model displays a region of anomalous diffusion which lies inside the region of anomalous density, englobed by the line of temperatures of maximum density (TMD). Further, we have found that the diffusivity undergoes a dynamic transition which may be classified as fragile-to-strong transition at the critical line only at low pressures. At higher densities, no dynamic transition is seen on crossing the critical line. Thus evidence from this study is that relation of dynamic transitions to criticality may be discarded

    Vapour reactive distillation process for hydrogen production by hi decomposition from hi-i2-h2o solutions

    Get PDF
    In this contribution, a sequential and hierarchical approach for the feasibility analysis and the preliminary design of reactive distillation columns is extended to systems involving vapour phase chemical reaction and is successfully applied to the HI vapour phase decomposition to produce H2. The complex phase and physico chemical behaviour of the quaternary HI-H2-I2-H2O system is represented by the Neumann’s thermodynamic model and instantaneous vapour phase chemical equilibrium is assumed. Then, from minimal information concerning the physicochemical properties of the system, three successive steps lead to the design of the unit and the specification of its operating conditions: the feasibility analysis, the synthesis and the design step. First, the analysis of reactive condensation curve map method (rCCM), assuming infinite internal liquid and vapour flow rate and infinite reflux ratio, is used to assess the feasibility of the process. It determines the column structure and estimates the attainable compositions. These results are used as inputs data for the synthesis step. Based on the boundary value design method (BVD), considering finite internal liquid and vapour flow rate and finite reflux ratio while neglecting all thermal effects and assuming a constant heat of vaporisation, the synthesis step provides more precise information about the process configuration (minimum reflux ratio, number of theoretical stages, localisation and number of reactive plates, position of the feed plate). Finally, the BVD method results are used to initialise rigorous simulations, based on an equilibrium stage model with energy balance, to estimate the reflux ratio taking into account thermal effect on the process. The resulting design configuration consists in a single feed and entirely reactive distillation column. The column operates under a pressure of 22 bars. The feed of the reactive distillation column, coming from the Bunsen reaction section [xHI=0.10; xI2=0.39 xH2O=0.51], is at its boiling temperature. The residue consists in pure iodine. Water and produced hydrogen are recovered at the distillate. The column operates at a reflux ratio of 5 and is composed of 11 theoretical plates including the reboiler and the partial condenser with the feed at the stage 10 (counted downwards). The obtained HI dissociation yield is 99.6%

    Anomalies in a waterlike model confined between plates

    Full text link
    Using molecular dynamic simulations we study a waterlike model confined between two fixed hydrophobic plates. The system is tested for density, diffusion and structural anomalous behavior and compared with the bulk results. Within the range of confining distances we had explored we observe that in the pressure-temperature phase diagram the temperature of maximum density (TMD line), the temperature of maximum and minimum diffusion occur at lower temperatures when compared with the bulk values. For distances between the two layers below a certain threshold ,d≤dcd\le d_c, only two layers of particles are formed, for d≥dcd\ge d_c three or more layers are formed. In the case of three layers the central layer stays liquid while the contact layers crystallize. This result is in agreement with simulations for atomistic models

    Dynamic Transitions in a Two Dimensional Associating Lattice Gas Model

    Full text link
    Using Monte Carlo simulations we investigate some new aspects of the phase diagram and the behavior of the diffusion coefficient in an associating lattice gas (ALG) model on different regions of the phase diagram. The ALG model combines a two dimensional lattice gas where particles interact through a soft core potential and orientational degrees of freedom. The competition between soft core potential and directional attractive forces results in a high density liquid phase, a low density liquid phase, and a gas phase. Besides anomalies in the behavior of the density with the temperature at constant pressure and of the diffusion coefficient with density at constant temperature are also found. The two liquid phases are separated by a coexistence line that ends in a bicritical point. The low density liquid phase is separated from the gas phase by a coexistence line that ends in tricritical point. The bicritical and tricritical points are linked by a critical λ\lambda-line. The high density liquid phase and the fluid phases are separated by a second τ\tau critical line. We then investigate how the diffusion coefficient behaves on different regions of the chemical potential-temperature phase diagram. We find that diffusivity undergoes two types of dynamic transitions: a fragile-to-strong trans ition when the critical λ\lambda-line is crossed by decreasing the temperature at a constant chemical potential; and a strong-to-strong transition when the τ\tau-critical line is crossed by decreasing the temperature at a constant chemical potential.Comment: 22 page

    A dissemination strategy for immunizing scale-free networks

    Full text link
    We consider the problem of distributing a vaccine for immunizing a scale-free network against a given virus or worm. We introduce a new method, based on vaccine dissemination, that seems to reflect more accurately what is expected to occur in real-world networks. Also, since the dissemination is performed using only local information, the method can be easily employed in practice. Using a random-graph framework, we analyze our method both mathematically and by means of simulations. We demonstrate its efficacy regarding the trade-off between the expected number of nodes that receive the vaccine and the network's resulting vulnerability to develop an epidemic as the virus or worm attempts to infect one of its nodes. For some scenarios, the new method is seen to render the network practically invulnerable to attacks while requiring only a small fraction of the nodes to receive the vaccine
    • …
    corecore