11,888 research outputs found
Coexistence Curve Singularities at Critical End Points
We report an extensive Monte Carlo study of critical end point behaviour in a
symmetrical binary fluid mixture. On the basis of general scaling arguments,
singular behaviour is predicted in the diameter of the liquid-gas coexistence
curve as the critical end point is approached. The simulation results show
clear evidence for this singularity, as well as confirming a previously
predicted singularity in the coexistence chemical potential. Both singularities
should be detectable experimentally.Comment: 9 pages Revtex, 3 figures. To appear in Phys. Rev. Let
Diffusion anomaly and dynamic transitions in the Bell-Lavis water model
In this paper we investigate the dynamic properties of the minimal Bell-Lavis
(BL) water model and their relation to the thermodynamic anomalies. The
Bell-Lavis model is defined on a triangular lattice in which water molecules
are represented by particles with three symmetric bonding arms interacting
through van der Waals and hydrogen bonds. We have studied the model diffusivity
in different regions of the phase diagram through Monte Carlo simulations. Our
results show that the model displays a region of anomalous diffusion which lies
inside the region of anomalous density, englobed by the line of temperatures of
maximum density (TMD). Further, we have found that the diffusivity undergoes a
dynamic transition which may be classified as fragile-to-strong transition at
the critical line only at low pressures. At higher densities, no dynamic
transition is seen on crossing the critical line. Thus evidence from this study
is that relation of dynamic transitions to criticality may be discarded
Vapour reactive distillation process for hydrogen production by hi decomposition from hi-i2-h2o solutions
In this contribution, a sequential and hierarchical approach for the feasibility analysis and the preliminary design of reactive distillation columns is extended to systems involving vapour phase chemical reaction and is successfully applied to the HI vapour phase decomposition to produce H2.
The complex phase and physico chemical behaviour of the quaternary HI-H2-I2-H2O system is represented by the Neumann’s thermodynamic model and instantaneous vapour phase chemical equilibrium is assumed.
Then, from minimal information concerning the physicochemical properties of the system, three successive steps lead to the design of the unit and the specification of its operating conditions: the feasibility analysis, the synthesis and the design step. First, the analysis of reactive condensation curve map method (rCCM), assuming infinite internal liquid and vapour flow rate and infinite reflux ratio, is used to assess the feasibility of the process. It determines the column structure and estimates the attainable compositions. These results are used as inputs data for the synthesis step. Based on the boundary value design method (BVD), considering finite internal liquid and vapour flow rate and finite reflux ratio while neglecting all thermal effects and assuming a constant heat of vaporisation, the synthesis step provides more precise information about the process configuration (minimum reflux ratio, number of theoretical stages, localisation and number of reactive plates, position of the feed plate). Finally, the BVD method results are used to initialise rigorous simulations, based on an equilibrium stage model with energy balance, to estimate the reflux ratio taking into account thermal effect on the process.
The resulting design configuration consists in a single feed and entirely reactive distillation column. The column operates under a pressure of 22 bars. The feed of the reactive distillation column, coming from the Bunsen reaction section [xHI=0.10; xI2=0.39 xH2O=0.51], is at its boiling temperature. The residue consists in pure iodine. Water and produced hydrogen are recovered at the distillate. The column operates at a reflux ratio of 5 and is composed of 11 theoretical plates including the reboiler and the partial condenser with the feed at the stage 10 (counted downwards). The obtained HI dissociation yield is 99.6%
Anomalies in a waterlike model confined between plates
Using molecular dynamic simulations we study a waterlike model confined
between two fixed hydrophobic plates. The system is tested for density,
diffusion and structural anomalous behavior and compared with the bulk results.
Within the range of confining distances we had explored we observe that in the
pressure-temperature phase diagram the temperature of maximum density (TMD
line), the temperature of maximum and minimum diffusion occur at lower
temperatures when compared with the bulk values. For distances between the two
layers below a certain threshold ,, only two layers of particles are
formed, for three or more layers are formed. In the case of three
layers the central layer stays liquid while the contact layers crystallize.
This result is in agreement with simulations for atomistic models
Dynamic Transitions in a Two Dimensional Associating Lattice Gas Model
Using Monte Carlo simulations we investigate some new aspects of the phase
diagram and the behavior of the diffusion coefficient in an associating lattice
gas (ALG) model on different regions of the phase diagram. The ALG model
combines a two dimensional lattice gas where particles interact through a soft
core potential and orientational degrees of freedom. The competition between
soft core potential and directional attractive forces results in a high density
liquid phase, a low density liquid phase, and a gas phase. Besides anomalies in
the behavior of the density with the temperature at constant pressure and of
the diffusion coefficient with density at constant temperature are also found.
The two liquid phases are separated by a coexistence line that ends in a
bicritical point. The low density liquid phase is separated from the gas phase
by a coexistence line that ends in tricritical point. The bicritical and
tricritical points are linked by a critical -line. The high density
liquid phase and the fluid phases are separated by a second critical
line. We then investigate how the diffusion coefficient behaves on different
regions of the chemical potential-temperature phase diagram. We find that
diffusivity undergoes two types of dynamic transitions: a fragile-to-strong
trans ition when the critical -line is crossed by decreasing the
temperature at a constant chemical potential; and a strong-to-strong transition
when the -critical line is crossed by decreasing the temperature at a
constant chemical potential.Comment: 22 page
A dissemination strategy for immunizing scale-free networks
We consider the problem of distributing a vaccine for immunizing a scale-free
network against a given virus or worm. We introduce a new method, based on
vaccine dissemination, that seems to reflect more accurately what is expected
to occur in real-world networks. Also, since the dissemination is performed
using only local information, the method can be easily employed in practice.
Using a random-graph framework, we analyze our method both mathematically and
by means of simulations. We demonstrate its efficacy regarding the trade-off
between the expected number of nodes that receive the vaccine and the network's
resulting vulnerability to develop an epidemic as the virus or worm attempts to
infect one of its nodes. For some scenarios, the new method is seen to render
the network practically invulnerable to attacks while requiring only a small
fraction of the nodes to receive the vaccine
- …