In this paper we investigate the dynamic properties of the minimal Bell-Lavis
(BL) water model and their relation to the thermodynamic anomalies. The
Bell-Lavis model is defined on a triangular lattice in which water molecules
are represented by particles with three symmetric bonding arms interacting
through van der Waals and hydrogen bonds. We have studied the model diffusivity
in different regions of the phase diagram through Monte Carlo simulations. Our
results show that the model displays a region of anomalous diffusion which lies
inside the region of anomalous density, englobed by the line of temperatures of
maximum density (TMD). Further, we have found that the diffusivity undergoes a
dynamic transition which may be classified as fragile-to-strong transition at
the critical line only at low pressures. At higher densities, no dynamic
transition is seen on crossing the critical line. Thus evidence from this study
is that relation of dynamic transitions to criticality may be discarded