27 research outputs found

    Circulating tumor cells in metastatic colorectal cancer from basic understandig to clinical practice

    Get PDF
    Colorectal cancer (CRC) represents the third most diagnosed cancer type worldwide, accounting for more than 600.000 deaths in 2012, which approximately represents 8,5% of all cancer-related deaths. It arises from the inner intestinal layer, usually from preexisting polyps that, after a series of molecular and genetic alterations, finally generate colorectal tumors. It is very important to consider that in CRC patients, the appearance of cancer metastasis, tumor masses that originate from primary tumors at distant sites, strongly determine patient prognosis. Only 8-10% of patients diagnosed with CRC at advanced stages survive after five years of follow up, which reinforces the importance of metastasis research to improve patient management and survival rates in CRC

    A logistic model for the detection of circulating tumour cells in human metastatic colorectal cancer

    Get PDF
    The accuracy in the diagnosis of metastatic colorectal cancer (mCRC) represents one of the challenges in the clinical management of patients. The detection of circulating tumour cells (CTC) is becoming a promising alternative to current detection techniques, as it focuses on one of the players of the metastatic disease and it should provide with more specific and sensitive detection rates. Here, we describe an improved method of detection of CTC from mCRC patients by combining immune-enrichment, optimal purification of RNA from very low cell numbers, and the selection of accurate PCR probes. As a result, we obtained a logistic model that combines GAPDH and VIL1 normalized to CD45 rendering powerful results in the detection of CTC from mCRC patients (AUROC value 0.8599). We further demonstrated the utility of this model at the clinical setting, as a reliable prognosis tool to determine progression-free survival in mCRC patients. Overall, we developed a strategy that ameliorates the specificity and sensitivity in the detection of CTC, resulting in a robust and promising logistic model for the clinical management of metastatic colorectal cancer patients.Ministerio de Sanidad, Consumo y Bienestar Social. Beca número: CP08/00142Programa Comisión Europea Fondo Europeo de Desarollo Regional (FEDER

    ETV5 transcription program links BDNF and promotion of EMT at invasive front of endometrial carcinomas

    Get PDF
    Myometrial infiltration represents a main clinical determinant of endometrial carcinomas (EC) presenting as aggressive high-grade deeply invasive neoplasms, substantially associated with risk of recurrence and death. The up-regulation of ETV5 transcription factor linked to the promotion of epithelial to mesenchymal transition is considered as a basic mechanism underlying the initial steps of EC invasion. In this work, we aimed to investigate the transcription program of tumor invasion regulated by ETV5. We performed a comparative Chip-on-chip analysis at invasive front and superficial area of human EC. ETV5 specific binding to promoter regions of genes related to cellular migration, adhesion and invasion at deep invasion tumor areas highlighted the relevance of neural networks associated with cellular plasticity. Interestingly, brain-derived neurotrophic factor (BDNF) demonstrated a principal role orchestrating ETV5-mediated epithelial-to-mesenchymal transition in endometrial cancer. Impairment of the BDNF/tropomyosin-related kinase B (TrkB)/extracellular signal-regulated kinase axis in endometrial cancer cell lines reversed the aggressive and invasive phenotype promoted by the up-regulation of ETV5 at the invasive front of EC. Likewise, BDNF directly impacted on the efficiency of ETV5 promoted metastasis in a mice model of endometrial distant dissemination. These results translate the recognized role of BDNF/TrkB on neural plasticity into a relevant cancer metastasis event; suggest common mechanisms shared by neural development and tumor invasion; and offer new therapeutic opportunities specifically directed against disseminated disease in endometrial cancer

    Molecular Profiling of Circulating Tumour Cells Identifies Notch1 as a Principal Regulator in Advanced Non-Small Cell Lung Cancer

    Get PDF
    Knowledge on the molecular mechanisms underlying metastasis colonization in Non-Small Cell Lung Cancer (NSCLC) remains incomplete. A complete overview integrating driver mutations, primary tumour heterogeneity and overt metastasis lacks the dynamic contribution of disseminating metastatic cells due to the inaccessibility to the molecular profiling of Circulating Tumour Cells (CTCs). By combining immunoisolation and whole genome amplification, we performed a global gene expression analysis of EpCAM positive CTCs from advanced NSCLC patients. We identified an EpCAM+ CTC-specific expression profile in NSCLC patients mostly associated with cellular movement, cell adhesion and cell-to-cell signalling mediated by PI3K/AKT, ERK1/2 and NF-kB pathways. NOTCH1 emerged as a driver connecting active signalling pathways, with a reduced number of related candidate genes (NOTCH1, PTP4A3, LGALS3 and ITGB3) being further validated by RT-qPCR on an independent cohort of NSCLC patients. In addition, these markers demonstrated high prognostic value for Progression-Free Survival (PFS). In conclusion, molecular characterization of EpCAM+ CTCs from advanced NSCLC patients provided with highly specific biomarkers with potential applicability as a “liquid biopsy” for monitoring of NSCLC patients and confirmed NOTCH1 as a potential therapeutic target to block lung cancer dissemination.This work was funded by InveNNta (Innovation in Nanomedicine); Operational Programme for Cross-border Cooperation: Spain-Portugal (POCTEP) and European Regional Development Fund (ERDF). Javier Mariscal is recipient of a fellowship from Escola de Doutoramento Internacional Campus Vida of the University of Santiago de Compostela. Laura Muinelo-Romay is supported by ISCIII as Responsible of the Liquid Biopsy Analysis UnitS

    Exploring Biginelli-based scaffolds as A2B adenosine receptor antagonists: Unveiling novel structure-activity relationship trends, lead compounds, and potent colorectal anticancer agents

    Full text link
    Antagonists of the A(2B) adenosine receptor have recently emerged as targeted anticancer agents and immune checkpoint inhibitors within the realm of cancer immunotherapy. This study presents a comprehensive evaluation of novel Biginelli-assembled pyrimidine chemotypes, including mono-, bi-, and tricyclic derivatives, as A(2B)AR antagonists. We conducted a comprehensive examination of the adenosinergic profile (both binding and functional) of a large compound library consisting of 168 compounds. This approach unveiled original lead compounds and enabled the identification of novel structure-activity relationship (SAR) trends, which were supported by extensive computational studies, including quantum mechanical calculations and free energy perturbation (FEP) analysis. In total, 25 molecules showed attractive affinity (K-i < 100 nM) and outstanding selectivity for A(2B)AR. From these, five molecules corresponding to the new benzothiazole scaffold were below the K-i < 10 nM threshold, in addition to a novel dual A(2A)/A(2B) antagonist. The most potent compounds, and the dual antagonist, showed enantiospecific recognition in the A(2B)AR. Two A(2B)AR selective antagonists and the dual A(2A)AR/A(2B)AR antagonist reported in this study were assessed for their impact on colorectal cancer cell lines. The results revealed a significant and dose-dependent reduction in cell proliferation. Notably, the A(2B)AR antagonists exhibited remarkable specificity, as they did not impede the proliferation of non-tumoral cell lines. These findings support the efficacy and potential that A(2B)AR antagonists as valuable candidates for cancer therapy, but also that they can effectively complement strategies involving A(2A)AR antagonism in the context of immune checkpoint inhibition

    Predicting Outcome and Therapy Response in mCRC Patients Using an Indirect Method for CTCs Detection by a Multigene Expression Panel: A Multicentric Prospective Validation Study

    Get PDF
    Colorectal cancer (CRC) is one of the major causes of cancer-related deaths. Early detection of tumor relapse is crucial for determining the most appropriate therapeutic management. In clinical practice, computed tomography (CT) is routinely used, but small tumor changes are difficult to visualize, and reliable blood-based prognostic and monitoring biomarkers are urgently needed. The aim of this study was to prospectively validate a gene expression panel (composed of GAPDH, VIL1, CLU, TIMP1, TLN1, LOXL3 and ZEB2) for detecting circulating tumor cells (CTCs) as prognostic and predictive tool in blood samples from 94 metastatic CRC (mCRC) patients. Patients with higher gene panel expression before treatment had a reduced progression-free survival (PFS) and overall-survival (OS) rates compared with patients with low expression (p = 0.003 and p ≤ 0.001, respectively). Patients with increased expression of CTCs markers during treatment presented PFS and OS times of 8.95 and 11.74 months, respectively, compared with 14.41 and 24.7 for patients presenting decreased expression (PFS; p = 0.020; OS; p ≤ 0.001). Patients classified as non-responders by CTCs with treatment, but classified as responders by CT scan, showed significantly shorter survival times (PFS: 8.53 vs. 11.70; OS: 10.37 vs. 24.13; months). In conclusion, our CTCs detection panel demonstrated efficacy for early treatment response assessment in mCRC patients, and with increased reliability compared to CT scan.ACIS (Axencia de Coñecemento en Saude); SERGAS. Cofinanced ERDF Funds 2007–201

    A multimarker panel for circulating tumor cells detection predicts patient outcome and therapy response in metastatic colorectal cancer

    No full text
    et al.Circulating tumor cells (CTCs), proposed as major players in cancer dissemination, have demonstrated clinical prognostic significance in several cancer types. However, their predictive value remains unclear. Here we evaluated the clinical utility of six CTC markers (tissue specific and epithelial to mesenchymal transition transcripts) both as prognostic and predictive tools in metastatic colorectal cancer (mCRC) patients. CTCs were immunoisolated from blood in 50 mCRC patients at baseline and at 4 and 16 weeks after treatment onset. Expression levels of GAPDH, VIL1, CLU, TIMP1, LOXL3 and ZEB2 were determined by qualitative polymerase chain reaction and normalized to the unspecific cell isolation marker CD45. At baseline, median progression-free survival (PFS) and overall survival (OS) for patients with high CTC markers were 6.3 and 12.7 months, respectively, versus 12.7 and 24.2 for patients with low CTC markers (PFS; p=0.0003; OS; p=0.044). Concerning response to therapy, PFS and OS for patients with increased CTC markers along treatment were, respectively, 6.6 and 13.1 months, compared with 12.7 and 24.3 for patients presenting CTC markers reduction (PFS; p=0.004; OS; p=0.007). Of note, CTC markers identified therapy-refractory patients not detected by standard image techniques. Patients with increased CTC markers along treatment, but classified as responders by computed tomography, showed significantly shorter survival times (PFS: 7.8 vs. 13.2; OS: 14.4 vs. 24.4; months). In conclusion, we have generated a CTC marker panel for prognosis evaluation and the identification of patients benefiting or not from therapy in mCRC. Our methodology efficiently classified patients earlier than routine computed tomography and from a minimally invasive liquid biopsy.Grant sponsor: InveNNta (Innovation in Nanomedicine); Operational Programme for Cross-border Cooperation: Spain-Portugal (POCTEP); European Regional Development Fund (ERDF); FPU (to Jorge Barbazan); Grant number: AP2009–5229.Peer Reviewe
    corecore