32 research outputs found

    Editorial: sedimentology and society

    Get PDF
    Earth surface processes are increasingly affected by human activities, often resulting in complex, or unexpected consequences for society. The on-going effects of land-use changes and release of pollutants to the natural environment are of growing concern. Societal awareness of these environmental changes has grown rapidly over the past decade, prompting a need to better understand and predict the implications of future changes, and to inform adaptation and mitigation policies and strategies. Sedimentology is critical in understanding complex interplays between human activities and earth-surface processes by characterizing and quantifying the response of nature to human impact and vice versa, the impact of natural processes on society. Thus, while key challenges exist, there are many opportunities for sedimentologists to advance the understanding of the human-nature relationship (Hodgson et al., 2018) and thereby contribute to achieving the UN sustainability goals (United Nations Sustainable Development Goals, 2015). Research Topics of this contribution include natural hazards, pollutant dispersal, carbon transfer and storage, and Earth's surface response to changing climate and sea level. This Frontiers in Earth Science special issue brings together a collection of papers that bridge key knowledge gaps in these critical areas, and document the challenges and opportunities within the theme “Sedimentology and Society.

    Late Holocene evolution of a coupled, mud-dominated delta plain-chenier plain system, coastal Louisiana, USA

    Get PDF
    Abstract. Major deltas and their adjacent coastal plains are commonly linked by means of coast-parallel fluxes of water, sediment, and nutrients. Observations of the evolution of these interlinked systems over centennial to millennial timescales are essential to understand the interaction between point sources of sediment discharge (i.e. deltaic distributaries) and adjacent coastal plains across large spatial (i.e. hundreds of kilometres) scales. This information is needed to constrain future generations of numerical models to predict coastal evolution in relation to climate change and other human activities. Here we examine the coastal plain (Chenier Plain, CP) adjacent to the Mississippi River delta, one of the world's largest deltas. We use a refined chronology based on 22 new optically stimulated luminescence and 22 new radiocarbon ages to test the hypothesis that cyclic Mississippi subdelta shifting has influenced the evolution of the adjacent CP. We show that over the past 3 kyr, accumulation rates in the CP were generally 0–1 Mt yr−1. However, between 1.2 and 0.5 ka, when the Mississippi River shifted to a position more proximal to the CP, these rates increased to 2.9 ±1.1 Mt yr−1 or 0.5–1.5 % of the total sediment load of the Mississippi River. We conclude that CP evolution during the past 3 kyr was partly a direct consequence of shifting subdeltas, in addition to changing regional sediment sources and modest rates of relative sea-level (RSL) rise. The RSL history of the CP during this time period was constrained by new limiting data points from the base of overwash deposits associated with the cheniers. These findings have implications for Mississippi River sediment diversions that are currently being planned to restore portions of this vulnerable coast. Only if such diversions are located in the western portion of the Mississippi Delta plain could they potentially contribute to sustaining the CP shoreline. Our findings highlight the importance of a better understanding of mud-dominated shorelines that are often associated with major deltas, in light of the enormous investments in coastal management and restoration that will likely be made around the globe, now and especially later during this century. </jats:p

    Beachrock: a tool for reconstructing relative sea level in the far-field.

    Get PDF
    Today's understanding of sea-level change developed through a combination of process-based physical modelling and observational data. Observational data of sea-level change derives from coral reefs in the far-field of the former ice sheets where a geographically variable relative sea-level signal is expected as a response of the earth to ocean loading. Given this variability and the limited geographical distribution of coral reefs, there is a need to explore other, non-coral based sea-level markers to further understand sea-level change and, for example, to 'fingerprint' melt-water. Here, we present beachrock as a coastal deposit suitable for relative sea-level (RSL) observations in the far-field. Beachrock is an intertidal deposit forming in the zone where carbonate saturated meteoric and marine water mix and pCO2 decreases. We provide the conceptual framework for beachrock analysis and describe techniques suitable for analysing and dating the deposit. The approach is standardised by outlining the sediment characteristics in terms of RSL indicative meaning and indicative range, and is tested against published data. A study conducted on coasts of the Mediterranean Sea exemplifies the utility of beachrock for RSL reconstruction. It is shown that the precision of the reconstruction is derived from the combined uncertainty of age and tidal amplitude or tidal range. The uncertainty can be reduced to half the tidal amplitude when a deposit can be ascribed to the upper (or lower) intertidal zone. Beachrock-based data benefit from the lack of non-quantifiable error terms such as post-depositional compaction due to the instantaneous formation and high preservation potential of the deposit. This underlines the high precision of beachrock-based RSL reconstruction, which is a prime requirement for testing and extending coral-based records

    Technical note: Quantifying uranium-series disequilibrium in natural samples for dosimetric dating – Part 1: gamma spectrometry

    Get PDF
    Abstract. Dosimetric dating techniques rely on accurate and precise determination of environmental radioactivity. Gamma spectrometry is the method of choice for determining the activity of 238U, 232Th, and 40K. With the aim to standardize gamma-spectrometric procedures for the purpose of determining accurate parent nuclide activities in natural samples, we outline the basics of gamma spectrometry and practical laboratory procedures here. This includes gamma radiation and instrumentation, sample preparation, finding the suitable measurement geometry and sample size for a given detector, and using the most suitable energy peaks in a gamma spectrum. The issue of correct efficiency calibration is highlighted. The procedures outlined are required for estimating contemporary parent nuclide activity. For estimating changing activities during burial specific data analyses are required, and these are also highlighted. </jats:p

    No evidence from the eastern Mediterranean for a MIS 5e double peak sea-level highstand

    Get PDF
    To understand past and future sea-level variability, it is important to know if during an interglacial the eustatic sea level is constant or oscillates by several meters around an average value. Several field sites within and outside the tropics have been interpreted to suggest such oscillations during Marine Oxygen Isotope Stage (MIS) 5e (129–116 ka). Here, we present our analysis of one such non-tropical site, Hergla, where a facies succession indicates two foreshore deposits above each other, previously interpreted as MIS 5e sea-level highstand amplified by a second rise. Our study, based on field, microfacies, and optical age Bayesian statistics shows a sea-level rise forming the upper foreshore strata that coincided with the global sea-level rise of the MIS 5a interstadial. The site does therefore not provide evidence for the MIS 5e double peak. We conclude from our analysis that the facies-based proxy is insensitive to small-scale sea-level oscillation. Likewise, uncertainties associated with age estimates are too large to robustly infer a short-term sea-level change

    The mid-Holocene sea-level change in the Arabian Gulf

    Get PDF
    The mid-Holocene sea-level highstand is a well-known phenomenon in sea-level science, yet the knowledge on the highstand’s spatial and temporal distribution remains incomplete. Here we study the southwest coast of the Arabian-Persian Gulf where a mid-Holocene sea-level highstand and subsequent sea-level fall may have occurred due to the Earth crustal response to meltwater load. Sea-level indicators were established using standard facies analysis and error calculations, then constrained through glacio-isostatic adjustment (GIA) modelling and though procedures based on Gaussian Process and exponential decay analysis. This work allowed to identify the highstand at 1.6 ± 0.4 m occurring 6.7–6.0 ka, in excellent agreement with GIA model results. The subsequent shoreline migration followed the geophysical constraint by prograding in line with the sea-level fall until around 3 ka. Then, the strength of the external control weakened and internal processes, in particular sediment binding through microbial activity, started controlling the geometry of the accommodation space. </jats:p

    Denudation of the continental shelf between Britain and France at the glacial-interglacial timescale

    Get PDF
    The erosional morphology preserved at the sea bed in the eastern English Channel dominantly records denudation of the continental shelf by fluvial processes over multiple glacial-interglacial sea-level cycles rather than by catastrophic flooding through the Straits of Dover during the mid-Quaternary. Here, through the integration of multibeam bathymetry and shallow sub-bottom 2D seismic reflection profiles calibrated with vibrocore records, the first stratigraphic model of erosion and deposition on the eastern English Channel continental shelf is presented. Published Optical Stimulated Luminescence (OSL) and C ages were used to chronometrically constrain the stratigraphy and allow correlation of the continental shelf record with major climatic/sea-level periods. Five major erosion surfaces overlain by discrete sediment packages have been identified. The continental shelf in the eastern English Channel preserves a record of processes operating from Marine Isotope Stage (MIS) 6 to MIS 1. Planar and channelised erosion surfaces were formed by fluvial incision during lowstands or relative sea-level fall. The depth and lateral extent of incision was partly conditioned by underlying geology (rock type and tectonic structure), climatic conditions and changes in water and sediment discharge coupled to ice sheet dynamics and the drainage configuration of major rivers in Northwest Europe. Evidence for major erosion during or prior to MIS 6 is preserved. Fluvial sediments of MIS 2 age were identified within the Northern Palaeovalley, providing insights into the scale of erosion by normal fluvial regimes. Seismic and sedimentary facies indicate that deposition predominantly occurred during transgression when accommodation was created in palaeovalleys to allow discrete sediment bodies to form. Sediment reworking over multiple sea-level cycles (Saalian-Eemian-early Weichselian) by fluvial, coastal and marine processes created a multi-lateral, multi-storey succession of palaeovalley-fills that are preserved as a strath terrace. The data presented here reveal a composite erosional and depositional record that has undergone a high degree of reworking over multiple sea-level cycles leading to the preferential preservation of sediments associated with the most recent glacial-interglacial period

    Natalizumab treatment shows low cumulative probabilities of confirmed disability worsening to EDSS milestones in the long-term setting.

    Get PDF
    Abstract Background Though the Expanded Disability Status Scale (EDSS) is commonly used to assess disability level in relapsing-remitting multiple sclerosis (RRMS), the criteria defining disability progression are used for patients with a wide range of baseline levels of disability in relatively short-term trials. As a result, not all EDSS changes carry the same weight in terms of future disability, and treatment benefits such as decreased risk of reaching particular disability milestones may not be reliably captured. The objectives of this analysis are to assess the probability of confirmed disability worsening to specific EDSS milestones (i.e., EDSS scores ≥3.0, ≥4.0, or ≥6.0) at 288 weeks in the Tysabri Observational Program (TOP) and to examine the impact of relapses occurring during natalizumab therapy in TOP patients who had received natalizumab for ≥24 months. Methods TOP is an ongoing, open-label, observational, prospective study of patients with RRMS in clinical practice. Enrolled patients were naive to natalizumab at treatment initiation or had received ≤3 doses at the time of enrollment. Intravenous natalizumab (300 mg) infusions were given every 4 weeks, and the EDSS was assessed at baseline and every 24 weeks during treatment. Results Of the 4161 patients enrolled in TOP with follow-up of at least 24 months, 3253 patients with available baseline EDSS scores had continued natalizumab treatment and 908 had discontinued (5.4% due to a reported lack of efficacy and 16.4% for other reasons) at the 24-month time point. Those who discontinued due to lack of efficacy had higher baseline EDSS scores (median 4.5 vs. 3.5), higher on-treatment relapse rates (0.82 vs. 0.23), and higher cumulative probabilities of EDSS worsening (16% vs. 9%) at 24 months than those completing therapy. Among 24-month completers, after approximately 5.5 years of natalizumab treatment, the cumulative probabilities of confirmed EDSS worsening by 1.0 and 2.0 points were 18.5% and 7.9%, respectively (24-week confirmation), and 13.5% and 5.3%, respectively (48-week confirmation). The risks of 24- and 48-week confirmed EDSS worsening were significantly higher in patients with on-treatment relapses than in those without relapses. An analysis of time to specific EDSS milestones showed that the probabilities of 48-week confirmed transition from EDSS scores of 0.0–2.0 to ≥3.0, 2.0–3.0 to ≥4.0, and 4.0–5.0 to ≥6.0 at week 288 in TOP were 11.1%, 11.8%, and 9.5%, respectively, with lower probabilities observed among patients without on-treatment relapses (8.1%, 8.4%, and 5.7%, respectively). Conclusions In TOP patients with a median (range) baseline EDSS score of 3.5 (0.0–9.5) who completed 24 months of natalizumab treatment, the rate of 48-week confirmed disability worsening events was below 15%; after approximately 5.5 years of natalizumab treatment, 86.5% and 94.7% of patients did not have EDSS score increases of ≥1.0 or ≥2.0 points, respectively. The presence of relapses was associated with higher rates of overall disability worsening. These results were confirmed by assessing transition to EDSS milestones. Lower rates of overall 48-week confirmed EDSS worsening and of transitioning from EDSS score 4.0–5.0 to ≥6.0 in the absence of relapses suggest that relapses remain a significant driver of disability worsening and that on-treatment relapses in natalizumab-treated patients are of prognostic importance
    corecore