433 research outputs found

    Perspective taking eliminates differences in co-representation of out-group members’ actions

    Get PDF
    Coordinated action relies on shared representations between interaction partners: people co-represent actions of others in order to respond appropriately. However, little is known about the social factors that influence shared representations. We investigated whether actions performed by in-group and out-group members are represented differently, and if so, what role perspective-taking plays in this process. White participants performed a joint Simon task with an animated image of a hand with either white or black skin tone. Results of study I demonstrated that actions performed by in-group members were co-represented while actions of out-group members were not. In study II, it was found that participants co-represented actions of out-group members when they had read about an out-group member and to take his perspective prior to the actual experiment. Possible explanations for these findings are discussed

    Adiabatic Landau-Zener-St\"uckelberg transition with or without dissipation in low spin molecular system V15

    Full text link
    The spin one half molecular system V15 shows no barrier against spin reversal. This makes possible direct phonon activation between the two levels. By tuning the field sweeping rate and the thermal coupling between sample and thermal reservoir we have control over the phonon-bottleneck phenomena previously reported in this system. We demonstrate adiabatic motion of molecule spins in time dependent magnetic fields and with different thermal coupling to the cryostat bath. We also discuss the origin of the zero-field tunneling splitting for a half-integer spin.Comment: to appear in Phys. Rev. B - Rapid Communication

    Helping Made Easy: Ease of Argument Generation Enhances Intentions to Help

    Get PDF
    Previous work has shown that self-generating arguments is more persuasive than reading arguments provided by others, particularly if self-generation feels easy. The present study replicates and extends these findings by providing evidence for fluency effects on behavioral intention in the realm of helping. In two studies, participants were instructed to either self-generate or read two versus ten arguments about why it is good to help. Subsequently, a confederate asked them for help. Results show that self-generating few arguments is more effective than generating many arguments. While this pattern reverses for reading arguments, easy self-generation is the most effective strategy compared to all other conditions. These results have important implications for fostering behavioral change in all areas of life

    Crossover between Thermally Assisted and Pure Quantum Tunneling in Molecular Magnet Mn12-Acetate

    Full text link
    The crossover between thermally assisted and pure quantum tunneling has been studied in single crystals of high spin (S=10) uniaxial molecular magnet Mn12 using micro-Hall-effect magnetometry. Magnetic hysteresis and relaxation experiments have been used to investigate the energy levels that determine the magnetization reversal as a function of magnetic field and temperature. These experiments demonstrate that the crossover occurs in a narrow (0.1 K) or broad (1 K) temperature interval depending on the magnitude of the field transverse to the anisotropy axis.Comment: 5 pages, 4 figure

    Magnetic Anisotropy in the Molecular Complex V15

    Full text link
    We apply degenerate perturbation theory to investigate the effects of magnetic anisotropy in the magnetic molecule V15. Magnetic anisotropy is introduced via Dzyaloshinskii-Moriya (DM) interaction in the full Hilbert space of the system. Our model provides an explanation for the rounding of transitions in the magnetization as a function of applied field at low temperature, from which an estimate for the DM interaction is found. We find that the calculated energy differences of the lowest energy states are consistent with the available data. Our model also offers a novel explanation for the hysteretic nature of the time-dependent magnetization data.Comment: Final versio

    Dynamics of HIV-1 Assembly and Release

    Get PDF
    Assembly and release of human immunodeficiency virus (HIV) occur at the plasma membrane of infected cells and are driven by the Gag polyprotein. Previous studies analyzed viral morphogenesis using biochemical methods and static images, while dynamic and kinetic information has been lacking until very recently. Using a combination of wide-field and total internal reflection fluorescence microscopy, we have investigated the assembly and release of fluorescently labeled HIV-1 at the plasma membrane of living cells with high time resolution. Gag assembled into discrete clusters corresponding to single virions. Formation of multiple particles from the same site was rarely observed. Using a photoconvertible fluorescent protein fused to Gag, we determined that assembly was nucleated preferentially by Gag molecules that had recently attached to the plasma membrane or arrived directly from the cytosol. Both membrane-bound and cytosol derived Gag polyproteins contributed to the growing bud. After their initial appearance, assembly sites accumulated at the plasma membrane of individual cells over 1–2 hours. Assembly kinetics were rapid: the number of Gag molecules at a budding site increased, following a saturating exponential with a rate constant of ∼5×10−3 s−1, corresponding to 8–9 min for 90% completion of assembly for a single virion. Release of extracellular particles was observed at ∼1,500±700 s after the onset of assembly. The ability of the virus to recruit components of the cellular ESCRT machinery or to undergo proteolytic maturation, or the absence of Vpu did not significantly alter the assembly kinetics

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Phenotypic Detection of Clonotypic B Cells in Multiple Myeloma by Specific Immunoglobulin Ligands Reveals their Rarity in Multiple Myeloma

    Get PDF
    In multiple myeloma, circulating “clonotypic” B cells, that express the immunoglobulin rearrangement of the malignant plasma cell clone, can be indirectly detected by PCR. Their role as potential “feeder” cells for the malignant plasma cell pool remains controversial. Here we established for the first time an approach that allows direct tracking of such clonotypic cells by labeling with patient-specific immunoglobulin ligands in 15 patients with myeloma. Fifty percent of patients showed evidence of clonotypic B cells in blood or bone marrow by PCR. Epitope-mimicking peptides from random libraries were selected on each patient's individual immunoglobulin and used as ligands to trace cells expressing the idiotypic immunoglobulin on their surface. We established a flow cytometry and immunofluorescence protocol to track clonotypic B cells and validated it in two independent monoclonal B cell systems. Using this method, we found clonotypic B cells in only one out of 15 myeloma patients. In view of the assay's validated sensitivity level of 10−3, this surprising data suggests that the abundance of such cells has been vastly overestimated in the past and that they apparently represent a very rare population in myeloma. Our novel tracing approach may open perspectives to isolate and analyze clonotypic B cells and determine their role in myeloma pathobiology
    corecore