50 research outputs found

    Sculpting the disk around T Cha: an interferometric view

    Full text link
    (Abridged) Circumstellar disks are believed to be the birthplace of planets and are expected to dissipate on a timescale of a few Myr. The processes responsible for the removal of the dust and gas will strongly modify the radial distribution of the dust and consequently the SED. In particular, a young planet will open a gap, resulting in an inner disk dominating the near-IR emission and an outer disk emitting mostly in the far-IR. We analyze a full set of data (including VLTI/Pionier, VLTI/Midi, and VLT/NaCo/Sam) to constrain the structure of the transition disk around TCha. We used the Mcfost radiative transfer code to simultaneously model the SED and the interferometric observations. We find that the dust responsible for the emission in excess in the near-IR must have a narrow temperature distribution with a maximum close to the silicate sublimation temperature. This translates into a narrow inner dusty disk (0.07-0.11 AU). We find that the outer disk starts at about 12 AU and is partially resolved by the Pionier, Sam, and Midi instruments. We show that the Sam closure phases, interpreted as the signature of a candidate companion, may actually trace the asymmetry generated by forward scattering by dust grains in the upper layers of the outer disk. These observations help constrain the inclination and position angle of the outer disk. The presence of matter inside the gap is difficult to assess with present-day observations. Our model suggests the outer disk contaminates the interferometric signature of any potential companion that could be responsible for the gap opening, and such a companion still has to be unambiguously detected. We stress the difficulty to observe point sources in bright massive disks, and the consequent need to account for disk asymmetries (e.g. anisotropic scattering) in model-dependent search for companions.Comment: Removed the word "first" in the abstract of the paper: "obtained with the first 4-telescope combiner (VLTI/Pionier)

    The VLTI / PIONIER near-infrared interferometric survey of southern T Tauri stars. I. First results

    Get PDF
    Context : The properties of the inner disks of bright Herbig AeBe stars have been studied with near infrared (NIR) interferometry and high resolution spectroscopy. The continuum and a few molecular gas species have been studied close to the central star; however, sensitivity problems limit direct information about the inner disks of the fainter T Tauri stars. Aims : Our aim is to measure some of the properties of the inner regions of disks surrounding southern T Tauri stars. Methods : We performed a survey with the PIONIER recombiner instrument at H-band of 21 T Tauri stars. The baselines used ranged from 11 m to 129 m, corresponding to a maximum resolution of 3mas (0.45 au at 150 pc). Results : Thirteen disks are resolved well and the visibility curves are fully sampled as a function of baseline in the range 45-130 m for these 13 objects. A simple qualitative examination of visibility profiles allows us to identify a rapid drop-off in the visibilities at short baselines in 8 resolved disks. This is indicative of a significant contribution from an extended contribution of light from the disk. We demonstrate that this component is compatible with scattered light, providing strong support to a prediction made by Pinte et al. (2008). The amplitude of the drop-off and the amount of dust thermal emission changes from source to source suggesting that each disk is different. A by-product of the survey is the identification of a new milli-arcsec separation binary: WW Cha. Spectroscopic and interferometric data of AK Sco have also been fitted with a binary and disk model. Conclusions : Visibility data are reproduced well when thermal emission and scattering form dust are fully considered. The inner radii measured are consistent with the expected dust sublimation radii. Modelling of AK Sco suggests a likely coplanarity between the disk and the binary's orbital planeComment: 19 pages, 11 figure

    Prion Protein Is a Key Determinant of Alcohol Sensitivity through the Modulation of N-Methyl-D-Aspartate Receptor (NMDAR) Activity

    Get PDF
    The prion protein (PrP) is absolutely required for the development of prion diseases; nevertheless, its physiological functions in the central nervous system remain elusive. Using a combination of behavioral, electrophysiological and biochemical approaches in transgenic mouse models, we provide strong evidence for a crucial role of PrP in alcohol sensitivity. Indeed, PrP knock out (PrP−/−) mice presented a greater sensitivity to the sedative effects of EtOH compared to wild-type (wt) control mice. Conversely, compared to wt mice, those over-expressing mouse, human or hamster PrP genes presented a relative insensitivity to ethanol-induced sedation. An acute tolerance (i.e. reversion) to ethanol inhibition of N-methyl-D-aspartate (NMDA) receptor-mediated excitatory post-synaptic potentials in hippocampal slices developed slower in PrP−/− mice than in wt mice. We show that PrP is required to induce acute tolerance to ethanol by activating a Src-protein tyrosine kinase-dependent intracellular signaling pathway. In an attempt to decipher the molecular mechanisms underlying PrP-dependent ethanol effect, we looked for changes in lipid raft features in hippocampus of ethanol-treated wt mice compared to PrP−/− mice. Ethanol induced rapid and transient changes of buoyancy of lipid raft-associated proteins in hippocampus of wt but not PrP−/− mice suggesting a possible mechanistic link for PrP-dependent signal transduction. Together, our results reveal a hitherto unknown physiological role of PrP on the regulation of NMDAR activity and highlight its crucial role in synaptic functions

    Dynamical Evidence of a Spiral Arm-driving Planet in the MWC 758 Protoplanetary Disk

    Get PDF
    More than a dozen young stars host spiral arms in their surrounding protoplanetary disks. The excitation mechanisms of such arms are under debate. The two leading hypotheses—companion-disk interaction and gravitational instability (GI)—predict distinct motion for spirals. By imaging the MWC 758 spiral arm system at two epochs spanning ∌5 yr using the SPHERE instrument on the Very Large Telescope, we test the two hypotheses for the first time. We find that the pattern speeds of the spirals are not consistent with the GI origin. Our measurements further evince the existence of a faint "missing planet" driving the disk arms. The average spiral pattern speed is 0°22 ± 0°03 yr[SUP]-1[/SUP], pointing to a driver at 172−14+18{172}_{-14}^{+18} au around a 1.9 M[SUB]☉[/SUB] central star if it is on a circular orbit. In addition, we witness time-varying shadowing effects on a global scale that are likely originating from an inner disk

    Expression profiles of prion and doppel proteins and of their receptors in mouse splenocytes.

    No full text
    Doppel (Dpl) shares common structural features with the prion protein (PrP) whose pathologic isoform is considered as the causative agent of prion diseases. Although their physiological functions in the immune system remain largely unknown, we demonstrated that substantial amounts of PrP and Dpl are expressed by spleen cells notably B lymphocytes, granulocytes and DC, but not T lymphocytes and NK. To characterize trans-interacting partners of PrP and Dpl on mouse splenocytes, fluorescent PrP and Dpl tetramers were produced and used as tracers. Both tetramers specifically bind to B lymphocytes, dendritic cells, macrophages and granulocytes and in a lesser extend to T lymphocytes. No binding was observed on NK, follicular dendritic cells and mesenchymal spleen cells. The activation of intracellular transduction signals (i.e. intracellular calcium concentration and activation of the MAP kinase pathway) suggested that PrP and Dpl tetramers bind to functional receptors on B cells. None of the previously described PrP partners account for the binding sites characterized here. Our study suggests a possible role for PrP and Dpl in the cell-cell interactions in the immune system

    Relative performance of future altimeter systems and tide gauges in constraining a model of North Sea high-frequency barotropic dynamics

    No full text
    14 pages, 13 figures, 1 tableWe evaluate in this paper the ability of several altimeter systems, considered separately as well as together with tide gauges, to control the time evolution of a barotropic model of the North Sea shelf. This evaluation is performed in the framework of the particular model errors due to uncertainties in bathymetry. An Ensemble Kalman Filter (EnKF) data assimilation approach is adopted, and observing-systems simulation experiments (OSSEs) are carried out using ensemble spread statistics. The skill criterion for the comparison of observing networks is, therefore, not based on the misfit between two simulations, as done in classic twin experiments, but on the reduction of ensemble variance occurring as a consequence of the assimilation. Future altimeter systems, such as the Wide Swath Ocean Altimeter (WSOA) and satellite constellations, are considered in this work. A single WSOA exhibits, for instance, similar performance as two-nadir satellites in terms of sea-level correction, and is better than three satellites in terms of model velocity control. Generally speaking, the temporal resolution of observations is shown to be of major importance for controlling the model error in these experiments. This result is clearly related to the focus adopted in this study on the specific high-frequency response of the ocean to meteorological forcing. Altimeter systems lack adequate temporal sampling for properly correcting the major part of model error in this context, whereas tide gauges, which provide a much finer time resolution, lead to better global statistical performance. When looking into further detail, tide gauges and altimetry are demonstrated to exhibit an interesting complementary character over the whole shelf, as tide gauge networks make it possible to properly control model error in a ∌100-km coastal band, while high-resolution altimeter systems are more efficient farther from the coastThis work was jointly supported by the Centre National d'Etudes Spatiales (CNES) and the Centre de la recherche Scientifique (CNRS)Peer reviewe

    Relative performances of future altimeter systems and tide gauges in controlling a model of the North Sea high-frequency barotropic dynamics

    No full text
    International audienceWe evaluate in this paper the ability of several altimeter systems, considered separately as well as together with tide gauges, to control the time evolution of a barotropic model of the North Sea shelf. This evaluation is performed in the framework of the particular model errors due to uncertainties in bathymetry. An Ensemble Kalman Filter (EnKF) data assimilation approach is adopted, and observing-systems simulation experiments (OSSEs) are carried out using ensemble spread statistics. The skill criterion for the comparison of observing networks is, therefore, not based on the misfit between two simulations, as done in classic twin experiments, but on the reduction of ensemble variance occurring as a consequence of the assimilation. Future altimeter systems, such as the Wide Swath Ocean Altimeter (WSOA) and satellite constellations, are considered in this work. A single WSOA exhibits, for instance, similar performance as two-nadir satellites in terms of sea-level correction, and is better than three satellites in terms of model velocity control. Generally speaking, the temporal resolution of observations is shown to be of major importance for controlling the model error in these experiments. This result is clearly related to the focus adopted in this study on the specific high-frequency response of the ocean to meteorological forcing. Altimeter systems lack adequate temporal sampling for properly correcting the major part of model error in this context, whereas tide gauges, which provide a much finer time resolution, lead to better global statistical performance. When looking into further detail, tide gauges and altimetry are demonstrated to exhibit an interesting complementary character over the whole shelf, as tide gauge networks make it possible to properly control model error in a ∌100-km coastal band, while high-resolution altimeter systems are more efficient farther from the coast

    <p>An unexpected case of <em>Bartonella alsatica</em> prosthetic vascular graft infection</p>

    No full text
    International audienceBartonella alsatica is a wild rabbit pathogen causing bacteremia rarely reported in humans, with only three cases published so far, including one lymphadenitis and two endocarditis cases. Here, we report the case of a 66-year-old man who suffered from acute renal failure due to a membranoproliferative glomerulonephritis. Fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) showed diffuse FDG uptake around the aortobifemoral graft with no indication of infection. A white blood cell scan showed an accumulation of labeled neutrophils on the left femoral part of the graft. The patient underwent surgery and an abscess around the left iliac part of the graft was found intraoperatively. Intraoperative samples were all negative, but 16S rRNA gene-based PCR was positive, and the sequence was positioned among the Bartonella species cluster. Specific PCRs targeting groEL/hsp60, rpoB and gltA genes were performed and led to the identification of B. alsatica. Accordingly, indirect immunofluorescence serological analyses were positive for Bartonella henselae and Bartonella quintana. The patient had a history of regularly hunting wild rabbits. He was treated with 100 mg of doxycycline twice a day for six months and his renal function significantly improved with no sign of persistent infection. This case highlights the contribution of serology assays and molecular-based methods in prosthetic vascular graft infection diagnosis
    corecore