1,026 research outputs found

    Divergent Effects of Factors on Crash Severity under Autonomous and Conventional Driving Modes Using a Hierarchical Bayesian Approach

    Get PDF
    Influencing factors on crash severity involved with autonomous vehicles (AVs) have been paid increasing attention. However, there is a lack of comparative analyses of those factors between AVs and human-driven vehicles. To fill this research gap, the study aims to explore the divergent effects of factors on crash severity under autonomous and conventional (i.e., human-driven) driving modes. This study obtained 180 publicly available autonomous vehicle crash data, and 39 explanatory variables were extracted from three categories, including environment, roads, and vehicles. Then, a hierarchical Bayesian approach was applied to analyze the impacting factors on crash severity (i.e., injury or no injury) under both driving modes with considering unobserved heterogeneities. The results showed that some influencing factors affected both driving modes, but their degrees were different. For example, daily visitors\u27 flowrate had a greater impact on the crash severity under the conventional driving mode. More influencing factors only had significant impacts on one of the driving modes. For example, in the autonomous driving mode, mixed land use increased the severity of crashes, while daytime had the opposite effects. This study could contribute to specifying more appropriate policies to reduce the crash severity of both autonomous and human-driven vehicles especially in mixed traffic conditions

    Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization

    Get PDF
    Scope: Obesity is closely related to the imbalance of white adipose tissue storing excess calories, and brown adipose tissue dissipating energy to produce heat in mammals. Recent studies revealed that acquisition of brown characteristics by white adipocytes, termed “browning,” may positively contribute to cellular bioenergetics and metabolism homeostasis. The goal was to investigate the putative effects of natural antioxidant sulforaphane (1-isothiocyanate-4-methyl-sulfonyl butane; SFN) on browning of white adipocytes. Methods and Results: 3T3-L1 mature white adipocytes were treated with SFN for 48 h, and then the mitochondrial content, function, and energy utilization were assessed. SFN was found to induce 3T3-L1 adipocytes browning based on the increased mitochondrial content and activity of respiratory chain enzymes, whereas the mechanism involved the upregulation of nuclear factor E2-related factor 2/ sirtuin1/ peroxisome proliferator-activated receptor gamma coactivator 1 alpha signaling. SFN enhanced uncoupling protein 1 expression, a marker for brown adipocyte, leading to the decrease in cellular ATP. SFN also enhanced glucose uptake and oxidative utilization, lipolysis and fatty acid oxidation in 3T3-L1 adipocytes. Conclusion: SFN-induced browning of white adipocytes enhanced the utilization of cellular fuel, and the application of SFN is a promising strategy to combat obesity and obesity-related metabolic disorder

    Identity Authentication Security Management in Mobile Payment Systems

    Get PDF
    Mobile payment is a new payment method offering users mobility, reachability, compatibility, and convenience. But mobile payment involves great uncertainty and risk given its electronic and wireless nature. Therefore, biometric authentication has been adopted widely in mobile payment in recent years. However, although technology requirements for secure mobile payment have been met, standards and consistent requirements of user authentication in mobile payment are not available. The flow management of user authentication in mobile payment is still at its early stage. Accordingly, this paper proposes an anonymous authentication and management flow for mobile payment to support secure transaction to prevent the disclosure of users\u27 information and to reduce identity theft. The proposed management flow integrates transaction key generation, encryption and decryption, and matching to process users\u27 personal information and biometric characteristics based on mobile equipment authentication carrier

    Effects of 24-week treatment with acarbose on glucagon-like peptide 1 in newly diagnosed type 2 diabetic patients: a preliminary report

    Get PDF
    BACKGROUND: Treatment with the alpha-glucosidase inhibitor (AGI) acarbose is associated with a significant reduction the risk of cardiovascular events. However, the underlying mechanisms of this effect are unclear. AGIs were recently suggested to participate in stimulating glucagon-like peptide 1 (GLP-1) secretion. We therefore examined the effects of a 24-week treatment of acarbose on endogenous GLP-1, nitric oxide (NO) levels, nitric oxide synthase (NOS) activity, and carotid intima-media thickness (CIMT) in newly diagnosed patients with type 2 diabetes (T2D). METHODS: Blood was drawn from 24 subjects (14 male, 10 female, age: 50.7 ± 7.36 years, BMI: 26.64 ± 3.38 kg/m(2), GHbA1c: 7.00 ± 0.74%) with drug-naĂŻve T2D at 0 and 120 min following a standard mixed meal for the measurements of active GLP-1, NO and NOS. The CIMT was measured prior to and following 24 weeks of acarbose monotherapy (mean dose: 268 mg daily). RESULTS: Following 24 weeks of acarbose treatment, both fasting and postprandial plasma GLP-1 levels were increased. In patients with increased postprandial GLP-1 levels, serum NO levels and NOS activities were also significantly increased and were positively related to GLP-1 levels. Although the CIMT was not significantly altered following treatment with acarbose, a decreased CIMT was negatively correlated with increased GLP-1 levels. CONCLUSIONS: Twenty-four weeks of acarbose monotherapy in newly diagnosed patients with T2D is associated with significantly increased levels of both fasting and postprandial GLP-1 as well as significantly increased NO levels and NOS activity for those patients in whom postprandial GLP-1 levels were increased. Therefore, the benefits of acarbose on cardiovascular risk may be related to its stimulation of GLP-1 secretion

    Precise determination of seawater calcium using isotope dilution inductively coupled plasma mass spectrometry

    Get PDF
    NSC, TaiwanWe describe a method for rapid, precise and accurate determination of calcium ion (Ca2+) concentration in seawater using isotope dilution inductively coupled plasma mass spectrometry (ID-ICP-MS). A 10 mu L aliquot of seawater was spiked with an appropriate Ca-43 enriched solution for Ca-44/Ca-43 ID-ICP-MS analyses, using an Element XR (Thermo Fisher Scientific), operated at low resolution in E-scan acquisition mode. A standard-sample bracketing technique was applied to correct for potential mass discrimination and ratio drift at every 5 samples. A precision of better than 0.05% for within-run and 0.10% for duplicate measurements of the IAPSO seawater standard was achieved using 10 mu L solutions with a measuring time less than 3 minutes. Depth profiles of seawater samples collected from the Arctic Ocean basin were processed and compared with results obtained by the classic ethylene glycol tetra-acetic acid (EGTA) titration. Our new ID-ICP-MS data agreed closely with the conventional EGTA data, with the latter consistently displaying 1.5% excess Ca2+ values, possibly due to a contribution of interference from Mg2+ and Sr2+ in the EGTA titration. The newly obtained Sr/Ca profiles reveal sensitive water mass mixing in the upper oceanic column to reflect ice melting in the Arctic region. This novel technique provides a tool for seawater Ca2+ determination with small sample size, high throughput, excellent internal precision and external reproducibility

    Heteroatoms Induce Localization of the Electric Field and Promote a Wide Potential-Window Selectivity Towards CO in the CO2 Electroreduction

    Get PDF
    Carbon dioxide electroreduction (CO2RR) is a sustainable way of producing carbon-neutral fuels. Product selectivity in CO2RR is regulated by the adsorption energy of reaction-intermediates. Here, we employ differential phase contrast-scanning transmission electron microscopy (DPC-STEM) to demonstrate that Sn heteroatoms on a Ag catalyst generate very strong and atomically localized electric fields. In situ attenuated total reflection infrared spectroscopy (ATR-IR) results verified that the localized electric field enhances the adsorption of *COOH, thus favoring the production of CO during CO2RR. The Ag/Sn catalyst exhibits an approximately 100 % CO selectivity at a very wide range of potentials (from -0.5 to -1.1 V, versus reversible hydrogen electrode), and with a remarkably high energy efficiency (EE) of 76.1 %

    The histone H3K9M mutation synergizes with H3K14 ubiquitylation to selectively sequester histone H3K9 methyltransferase Clr4 at heterochromatin

    Get PDF
    International audienceOncogenic histone lysine-to-methionine mutations block the methylation of their corresponding lysine residues on wild-type histones. One attractive model is that these mutations sequester histone methyltransferases, but genome-wide studies show that mutant histones and histone methyltransferases often do not colocalize. Using chromatin immunoprecipitation sequencing (ChIP-seq), here, we show that, in fission yeast, even though H3K9M-containing nucleosomes are broadly distributed across the genome, the histone H3K9 methyltransferase Clr4 is mainly sequestered at pericentric repeats. This selective sequestration of Clr4 depends not only on H3K9M but also on H3K14 ubiquitylation (H3K14ub), a modification deposited by a Clr4-associated E3 ubiquitin ligase complex. In vitro, H3K14ub synergizes with H3K9M to interact with Clr4 and potentiates the inhibitory effects of H3K9M on Clr4 enzymatic activity. Moreover, binding kinetics show that H3K14ub overcomes the Clr4 aversion to H3K9M and reduces its dissociation. The selective sequestration model reconciles previous discrepancies and demonstrates the importance of protein-interaction kinetics in regulating biological processes
    • 

    corecore