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Abstract: Influencing factors on crash severity involved with autonomous vehicles (AVs) have been
paid increasing attention. However, there is a lack of comparative analyses of those factors between
AVs and human-driven vehicles. To fill this research gap, the study aims to explore the divergent
effects of factors on crash severity under autonomous and conventional (i.e., human-driven) driving
modes. This study obtained 180 publicly available autonomous vehicle crash data, and 39 explanatory
variables were extracted from three categories, including environment, roads, and vehicles. Then,
a hierarchical Bayesian approach was applied to analyze the impacting factors on crash severity
(i.e., injury or no injury) under both driving modes with considering unobserved heterogeneities.
The results showed that some influencing factors affected both driving modes, but their degrees
were different. For example, daily visitors’ flowrate had a greater impact on the crash severity under
the conventional driving mode. More influencing factors only had significant impacts on one of the
driving modes. For example, in the autonomous driving mode, mixed land use increased the severity
of crashes, while daytime had the opposite effects. This study could contribute to specifying more
appropriate policies to reduce the crash severity of both autonomous and human-driven vehicles
especially in mixed traffic conditions.

Keywords: crash severity; autonomous driving; conventional driving; hierarchical Bayesian approach

1. Introduction

Autonomous driving has recently been an innovation hotspot in the global automotive
industry [1,2]. It is widely believed that full automation driving will be an important
direction in the development of transportation engineering and will provide a potential
solution to transportation-related issues in safety, efficiency, and mobility [3–6]. However,
due to the incompleteness and cost of the current technological progress, the perception,
identification, and decision-making systems of autonomous vehicles (AVs) are, as it stands,
not perfect. They cannot effectively deal with all kinds of factors that affect driving safety.
Heretofore, there have been hundreds of crashes with the autopilot system turned on,
leading to heavy personal and property losses and psychological roadblocks to adopting
AVs [7–9]. Impacting factors on the crash severity of AVs may be different from human-
driven vehicles since autonomous driving is integrated and systematically based on big data
and artificial intelligence, while conventional driving is personalized [10]. Additionally,
there are a series of new problems brought about by AVs. For example, when driving
autonomous vehicles on roadways, drivers may use their travel time to accomplish leisure
activities which will inhibit their anticipation of possible driving activities and eventually
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result in a volatile traffic environment [11–13]. Therefore, it is meaningful and imperative
to explore the divergent effects of factors affecting safety for autonomous and conventional
driving using crash data.

The crash data involved with AVs has become more and more available for the public,
due to the fact that the regulatory requirements for the development and testing of AVs
have been gradually relaxed. AVs were allowed to be tested on roadways in September
of 2014 [14]. Companies and manufacturers that were approved to test AVs on California
public roads must submit a Traffic Collision Involving an Autonomous Vehicle Report
(OL 316) of the full description of the collision and other valid information [15].

Crash analyses of AVs have arisen within the past years. Some studies have focused on
the factors contributing to AV crash severity levels. The positive association between travel
speed and crash severity has been widely reported [16]. A substantially higher likelihood
of AV-involved injury crashes at the intersections was found [17,18]. The lengthy time for
drivers to repossess the authority of the vehicle might increase the likelihood of serious
incidents [19]. Down-slopes, nighttime, involvement of multiple vehicles, and high-density
traffic would also increase the likelihood of high crash severity of AVs [20]. In addition,
location at an intersection, presence of roadside parking has been found to be the main
positive contributing factors to the severity of AV crashes, while the one-way road would
decrease the crash severity [21].

A lot of research on disengagements has been conducted based on Disengagement
Reports (OL311R) from the California Department of Motor Vehicles (DMV). Causes and
contributing factors of disengagements were investigated, and when lacking certain num-
bers of radar and LiDAR sensors installed on AVs were found to significantly induce an AV
disengagement [22]. Additionally, influence factors between disengagements with a crash,
disengagements with no crash, and no disengagement with a crash in a mixed traffic envi-
ronment were also discussed. Variables related to AV systems (such as software failures)
and other roadway participants may increase the propensity of disengagement without a
crash [23]. With the analysis of AV’s interactions with other road users before a collision in
a temporal manner, the results showed that the most representative pattern in AV crashes
was “collision following AV stop” [24]. Distinct from these previous studies, this study will
not analyze disengagements separately but consider disengagement-related variables as
additional explanatory variables to obtain more insights into the pre-crash behavior of Avs;
then, distinct effects of factors on crashes between autonomous and conventional driving
modes will be further explored in this study.

To analyze the influencing factors of crashes, many methods have been employed in
previous studies, such as the probit model, binomial/multinomial logistic regression, clas-
sification tree, and so on [21,25,26]. However, reliable and unbiased correlations between
crashes and influencing factors cannot be established because of the presence of unobserved
heterogeneity [27–29]. The hierarchical Bayesian approach can solve such problems. In
addition, since AV crash data are difficult to collect but gradually available, the hierarchical
Bayesian approach can use any engineering experiences or justified previous findings as
prior knowledge to update the model [30,31]. This approach could also well handle missing
data that occur commonly in crash records by considering the information contained in
other observed data [32,33]. In addition, such a technique performs well in the estimation
of discrete outcome models with smaller sample sizes [34]. For example, this method was
applied to analyze correlations of influencing factors of AV-involved crashes, with a sample
of 113 available crashes [35].

Given the above, there has been much research on the influencing factors of crashes
and disengagements involved with autonomous driving, but there is a lack of comparative
analyses of those factors between AVs and human-driven vehicles. To fill this research gap,
this study utilizes the publicly available AV crash data in real driving environments and
employs the hierarchical Bayesian approach to further explore and examine the differences
of impacting factors between autonomous and conventional driving modes from the
aspect of crash severity (i.e., injury or no injury). This study will assist the understanding,
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development, and testing of autonomous driving systems. In the stage of human-machine
co-driving, it can also provide reliable references for reducing crash severity for both AVs
and human-driven vehicles.

2. Materials and Methods
2.1. Data Preparation

As mentioned before, when AVs were involved in a crash while driving on public
roads in California, a description of how the collision occurred and other associated factors
would be submitted in the Traffic Collision Involving an Autonomous Vehicle Report
(OL 316). AVs in the conventionally human-driven mode still need to submit crash re-
ports, therefore, crashes in both driving modes (i.e., the autonomous driving mode and
conventional driving mode) were included in this database. These publicly available
reports can be downloaded from the website (https://www.dmv.ca.gov/portal/vehicle-
industry-services/autonomous-vehicles/autonomous-vehicle-collision-reports/ (accessed
on 1 April 2021)). By the time of writing this paper, reports from May 2018 to March 2021
were open, fully informative, and available. The Society of Automotive Engineers (SAE)
defines six levels of driving automation to describe the full range of driving automation
features, from Level 0 (No automation) to Level 5 (full automation) [36]. Vehicles in this
AV crash database are considered to be conditional automation (Level 3), also known as
driver-initiated automation [35,37]. Level 3 AVs are equipped with the ADAS technologies,
sensors, and actuators, capable of automated highway driving, automated city driving,
automated valet parking, and evasive maneuvers, but it is still essential for test drivers to
take over driving promptly if there is a foreseen crash [38].

To consider the transitions from AV systems to test drivers, more information from
Disengagement Reports (OL 311R) provided by California DMV (https://www.dmv.ca.
gov/portal/dmv/detail/vr/autonomous/testing (accessed on 1 April 2021)) was added,
and these reports consisted of all instances of disengagements occurring when AVs were
tested. Then, the disengagement-related data was linked with the AV crash database
(i.e., Traffic Collision Involving an Autonomous Vehicle Reports (OL 316)). Since not
all disengagements led to a crash, information from Disengagement Reports (OL311R)
were matched to the AV crashes that involved disengagements by carefully comparing
the specific dates, manufacturer, and vehicle types. In addition, a few crashes involving
disengagements which could not be found in Disengagement Reports (OL 311R) but
recorded by the descriptions of crashes in OL 316 were manually marked as “the presence
of disengagement”. In this study, the autonomous driving mode includes two situations:
(1) the AV system remained engaged throughout the crash; (2) the driver took over the
AV before the crash (i.e., disengagement occurred). Conventional mode indicates that the
manual mode is employed before the crash for a considerable period and the human driver
independently responds to the crash. Crashes in the conventional driving mode were
filtered by two criteria: (1) it was emphasized in OL 316 that the vehicle was manually
driven before the crash and disengagement was not mentioned; (2) the crash cannot be
found in the Disengagement Reports (OL311R). A total of 180 crashes in San Francisco were
extracted and used in the final analysis, including 96 crashes in the autonomous driving
mode and another 84 in the conventional driving mode. Crashes with disengagement
accounted for about 35% in autonomous driving mode.

Six new variables (i.e., disengagement, initiator of disengagement, unwanted behavior
of other roadway participants, unwanted movement of AVs, changing lane, deceleration)
from Disengagement Reports (OL311R) were fully contained in the dataset for further
analyses. Specifically, disengagement reflects the presence or absence of disengagement
in the autonomous driving mode. The initiator of disengagement indicates whether the
disengagement is initiated by the system or the test driver. The other four variables were
extracted from the description of Disengagement Reports (OL311R), which may be the
causes of disengagements. Unwanted behavior of other roadway participants means
reckless action of another vehicle or another non-vehicle roadway participant, such as a

https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-collision-reports/
https://www.dmv.ca.gov/portal/vehicle-industry-services/autonomous-vehicles/autonomous-vehicle-collision-reports/
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing
https://www.dmv.ca.gov/portal/dmv/detail/vr/autonomous/testing
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cyclist driving aggressively. Illegal behavior of AVs, such as entering the opposite lane
suddenly, is reflected by the unwanted movement of AVs. Changing lanes indicate lane-
changing maneuvers of AVs for reasons such as unstable target lane model. Deceleration
refers to AVs dropping the speed for safety precaution or other reasons. As for those
disengagements only found in the crash reports of OL316, their disengagement-related
variables were manually extracted based on the descriptions of crashes.

To better understand the impact of environmental, road, and vehicle characteris-
tics on the safety under different driving modes, this study obtained more explana-
tory variables through TransBASE: Linking Transportation Systems to Our Health (http:
//transbasesf.org/transbase/ (accessed on 1 April 2021)) and Google Earth (https://www.
google.com/earth (accessed on 1 April 2021)) and then made hard efforts to manually link
them to the crash sites through the location of each crash. TransBASE is a free and open on-
line database that currently includes over 200 spatially referenced variables from multiple
agencies and across a range of geographic scales, including infrastructure, transportation,
zoning, sociodemographic, and collision data, all linked to an intersection or street segment.
It is currently used by San Francisco Municipal Transportation Agency. Seven environ-
mental variables (metro stop, land use, muni line, daily visitors’ flowrate (DVF), pavement
markings conditions, schools, parks) and 13 road variables (street classification, one-way,
divided median, marked centerline, bike lane, on-street parking, off-street parking, traffic
calming, sidewalk, driveway, crash lanes, speed limit, slope) were obtained from TransBase.
Google Earth was used to supplement some information, such as the specific width of the
road.

Crash severity was chosen to be the dependent variable. Considering the small
amount of data, it was divided into two levels. Crashes with injuries were considered
more serious, while a crash without injury (i.e., property damage only) was thought to be
of lower severity. The research on crashes with injuries or not had unique implications,
especially for autonomous vehicles. The public had great concerns about the safety of the
AVs and crashes with injury or death of people have proven to be a potential deterrent to
the acceptance and credibility of AVs. In addition, insurance, legal, ethical, economic, and
other fields were also interested in whether there was an injury in a crash involved with
AVs.

Before modeling, some typical variables that describe driving conditions were picked
out and a percent-stacking bar chart was plotted. As can be seen from Figure 1, the
proportion of each selected variable, such as the time of crashes (Night), road characteristics
(Speed limit, Street width, Number of driveways, Street type), type of the crash places (Daily
visitors’ flowrate (DVF), Intersection, Land use), and vehicle state at the time of crashes
(Turning movement, Vehicle state) was similar, which meant crashes in the autonomous
driving mode and conventional driving mode occurred under similar conditions, and they
were comparable.

Various discrete and continuous variables were obtained. The continuous variables
and their descriptive statistics are provided in Table 1. Before the model establishment, this
study divided continuous variables into discrete variables. Variables, including the count of
public and private schools within a quarter-mile, the count of parks within a quarter-mile,
and the count of driveways along the segment, were divided into two groups, according
to whether the number was less than 4. The rest continuous variables were split into two
groups, such as the number of lanes at the crash site (great than 2 or not), the width of the
street in feet (more than 60 feet or not), the speed limit (more than 25 mph or not), the slope
of the road (larger than 3% or not), etc.

http://transbasesf.org/transbase/
http://transbasesf.org/transbase/
https://www.google.com/earth
https://www.google.com/earth
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Figure 1. A comparison of driving conditions in both driving modes.

Table 1. Descriptive statistics of continuous variables.

Variable
Category Description Mean S.D. Min Max

Environmental Variables

Schools Count of public and private schools
within a quarter-mile 1.94805 1.8499 0 9

Parks Count of parks within a quarter-mile 1.89286 1.46636 0 6
Road Variables

Driveway Count of driveways along segment 3.12987 1.36579 1 8
Crash lanes Number of lanes at crash site 2.12338 1.07453 1 6
Street width Width of street in feet 51.85065 19.63816 22 140
Speed limit Speed limit of roadway in mph 25.42208 1.71034 15 30

Slope Slope in percentage of roadway 3.41558 2.95931 1 10

After discretization of the continuous variables, 41 discrete variables used in the model
were finally obtained. Table 2 presents the dependent variable and the other 40 explanatory
variables which are divided into three categories, including environment, roads, and
vehicles. Specifically, there were 14 environmental variables (e.g., trees, land use, weather,
roadway surface, etc.), 14 road variables (e.g., bike lanes, street width, number of driveways,
etc.), and 12 vehicle variables, (e.g., vehicle damage, turning movement, manufacturer,
vehicle year, vehicle state, etc.). The detailed descriptions, distributions, and sources of
them are provided.

Before modeling, multicollinearity was checked by calculating the variance inflation
factors (VIFs) for all independent variables. VIF indicates the extent to which an indicator’s
variance is captured by the remaining indicators of a given construct and VIF > 10 denotes
severe multicollinearity [39,40]. In this study, the VIF values for all the selected independent
variables were less than 10, indicating that the problem of multicollinearity did not exist or
could be negligible while modeling.
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Table 2. Descriptions, distribution, and sources of explanatory variables.

Variable
Category Description Variable

Autonomous Conventional
Source

Num Percent Num Percent

Injury Someone injured No * 74 77.08% 70 83.33%
OL 316Yes 22 22.92% 14 16.67%

Environmental Variables

Time of day Time of the crash
Daytime 60 62.50% 69 82.14%

OL 316Night * 36 37.50% 15 17.86%
Involved in the

crash
Non-motor vehicles or pedestrians

involved in the crash
No 78 81.25% 58 69.05%

OL 316Yes * 18 18.75% 26 30.95%

Intersection Crash happened at an intersection No * 33 34.38% 28 33.33%
OL 316Yes 63 65.63% 56 66.67%

Light Presence of light Dark * 54 56.25% 5 5.95%
OL 316Daylight 42 43.75% 79 94.05%

Roadway surface Condition of roadway surface
Dry 91 94.79% 75 89.29%

OL 316Wet * 3 3.13% 6 7.14%
Unknown 2 2.08% 3 3.57%

Metro stop Presence of metro stop Absence * 51 53.13% 39 46.43%
TransBASEPresence 45 46.88% 45 53.57%

Trees Presence of trees
Absence * 19 19.79% 23 27.38%

TransBASEPresence 77 80.21% 61 72.62%

Land use Land use of the location

Commercial 26 27.08% 8 9.52%

TransBASE
Industrial 3 3.13% 5 5.95%

Mixed or public 39 40.63% 48 57.14%
Residential * 28 29.17% 23 27.38%

Weather Weather at the time of the crash

Clear weather * 85 88.54% 74 88.10%

OL 316
Cloudy 5 5.21% 7 8.33%

Fog/Visibility 2 2.08% 0 0.00%
Raining 3 3.13% 3 3.57%

Unknown 1 1.04% 0 0.00%

Muni line
Presence of muni line (i.e., public

transport line)
Absence * 20 20.83% 12 14.29%

TransBASEPresence 76 79.17% 72 85.71%

Daily visitors’
flowrate (DVF) Level of DVF

DVF < 3418 person-times 30 31.25% 32 38.10%

TransBASE
3418 person-times ≤ DVF

< 11,982 person-times 33 34.38% 23 27.38%

11,982 person-times ≤
DVF < 40,040
person-times

28 29.17% 24 28.57%

DVF ≥ 40,040
person-times * 5 5.21% 5 5.95%

Pavement
markings
conditions

conditions of pavement markings Poor * 6 6.25% 6 7.14% Google Earth
Adequate 90 93.75% 78 92.86%

Schools
Count of public and private schools

within a quarter-mile
Count of schools > 4 20 20.83% 16 19.05%

TransBASECount of schools ≤ 4 * 76 79.17% 68 80.95%

Parks
Count of parks within a

quarter-mile
Count of parks > 4 6 6.25% 5 5.95%

TransBASECount of parks ≤ 4 * 90 93.75% 79 94.05%
Road Variables

Street
classification Classification of street

High 1 1.04% 0 0.00%

TransBASE
Arterial 20 20.83% 16 19.05%

Collector 33 34.38% 29 34.52%
Residential * 42 43.75% 39 46.43%

One-way One-way street No * 62 64.58% 56 66.67%
TransBASEYes 34 35.42% 28 33.33%

Divided median Presence of divided median
Absence * 80 83.33% 76 90.48%

TransBASEPresence 16 16.67% 8 9.52%
Marked

centerline Presence of marked centerline
Absence * 56 58.33% 43 51.19%

TransBASEPresence 40 41.67% 41 48.81%

Bike lane Presence of bike lane
Absence * 70 72.92% 54 64.29%

TransBASEPresence 26 27.08% 30 35.71%
On-street
parking Presence of on-street parking Absence * 15 15.63% 11 13.10%

TransBASEPresence 81 84.38% 73 86.90%
Off-street
parking Presence of off-street parking Absence * 1 1.04% 3 3.57%

TransBASEPresence 95 98.96% 81 96.43%

Traffic calming Presence of traffic calming device Absence * 69 71.88% 58 69.05%
TransBASEPresence 27 28.13% 26 30.95%
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Table 2. Cont.

Variable
Category Description Variable

Autonomous Conventional
Source

Num Percent Num Percent

Sidewalk Presence of sidewalk
Absence or one-side of

segment * 5 5.21% 7 8.33%
TransBASE

Both sides of segment 91 94.79% 77 91.67%

Driveway Count of driveways along segment Driveways ≥ 4 * 31 32.29% 33 39.29%
TransBASEDriveways < 4 65 67.71% 51 60.71%

Crash lanes Number of lanes at crash site
Crash lanes > 2 36 37.50% 27 32.14%

TransBASECrash lanes ≤ 2 * 60 62.50% 57 67.86%

Street width Width of street in feet
Street width > 60 feet 21 21.88% 15 17.86% Google Earth

Street width ≤ 60 feet * 75 78.13% 69 82.14%

Speed limit Speed limit of roadway in mph Speed limit > 25 mph 11 11.46% 8 9.52%
TransBASESpeed limit ≤ 25 mph * 85 88.54% 76 90.48%

Slope Slope in percentage of roadway Slope > 3% 42 43.75% 31 36.90%
TransBASESlope ≤ 3% * 54 56.25% 53 63.10%

Vehicle Variables
Turning

movement
Turning movement of the AV No * 84 87.50% 53 63.10%

OL 316Yes 12 12.50% 31 36.90%

Manufacturer Manufacturer of the AV

Aurora Innovation, Inc.
(Pittsburgh, PA, USA) 0 0.00% 1 1.19%

OL 316
GM Cruise LLC

(San Francisco, CA, USA) 79 82.29% 53 63.10%

Lyft, Inc.
(San Francisco, CA, USA) 0 0.00% 2 2.38%

Waymo LLC
(Phoenix, AZ, USA) 8 8.33% 9 10.71%

Zoox, Lnc.
(San Francisco, CA, USA) 9 9.38% 19 22.62%

Vehicle year Production year of the AV

2016 9 9.38% 17 20.24%

OL 316

2017 20 20.83% 16 19.05%
2018 0 0.00% 1 1.19%
2019 21 21.88% 15 17.86%
2020 45 46.88% 34 40.48%
2021 1 1.04% 1 1.19%

Vehicle state State of AV
Stopped * 32 33.33% 37 44.05%

OL 316Moving 64 66.67% 47 55.95%

Crash type Type of the crash
Rear-end

Rear-end 57 59.38% 34 40.48%
OL 316Other * 39 40.63% 50 59.52%

Number of
vehicles involved

Number of vehicles involved in the
crash

1 * 11 11.46% 13 15.48%
OL 3162 84 87.50% 69 82.14%

3 1 1.04% 2 2.38%

Disengagement Presence of disengagement Absence * 60 62.50% 84 100.00% OL 316
&OL311RPresence 36 37.50% 0 0.00%

Initiator of
disengagement

Initiator of disengagement (system
or the test driver)

AV system 1 1.04% 0 0.00%
OL 316

&OL311R
Test driver 35 36.46% 0 0.00%

No 60 62.50% 84 100.00%
Unwanted

behavior of other
roadway

participants

Presence of unwanted behavior of
other roadway participants

Absence * 77 80.21% 84 100.00% OL 316
&OL311R

Presence 19 19.79% 0 0.00%

Unwanted
movement of

AVs

Presence of unwanted behavior of
AVs

Absence * 95 98.96% 84 100.00% OL 316
&OL311RPresence 1 1.04% 0 0.00%

Changing lanes Presence of AV’s changing lanes Absence * 64 66.67% 84 100.00% OL 316
&OL311RPresence 32 33.33% 0 0.00%

Deceleration Presence of AV’s deceleration
Absence * 76 79.17% 84 100.00% OL 316

&OL311RPresence 20 20.83% 0 0.00%

* denotes the reference group.

2.2. Hierarchical Bayesian Approach

This study applied the hierarchical Bayesian approach to explore the differences of
impacting factors on crashes for both autonomous and conventional driving modes while
considering the unobserved heterogeneities caused by vehicle companies and vehicle
years. This approach was composed of two parts: the hierarchical model and the Bayesian
inference.
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2.2.1. Hierarchical Model

The hierarchical method can properly model the potential heterogeneities [41–43],
so the crash effects of explanatory variables can be analyzed more accurately by using
this multi-level structure. In this part, the hierarchical logistic regression model was used
to analyze the impact of different influencing factors on the crash severity. In particular,
a “Vehicle company & year” unit was considered as a cluster, and there were several
sub-clusters per cluster, i.e., each crash.

Previous studies show that taking vehicle units as observation units may reveal crash
propensity variation among different vehicles [44,45]. Recently, more companies have
become permit holders to test their AVs on roadways. The perception recognition system,
decision-making system, software algorithm, and computing ability of AVs produced by
different companies have a lot of differences [26]. It should also be noted that autonomous
driving technologies are persistently and rapidly advancing, and the vehicle year can
reflect the “older” or “newer” technology to a certain extent. The complex influence of such
unobserved factors on the correlation between other observed variables and dependent
variables, called unobserved heterogeneity, may result in biased indications. These variables
cannot be obtained, but they could be reflected by AVs’ company and production year to
a certain degree. Therefore, this study took vehicles with the same vehicle year from the
same company (i.e., the “Vehicle company & year” unit) as an observation unit to alleviate
the effects of unobserved heterogeneity.

In the analysis of crash severity, the response variable Yij for the ith crash in the jth
vehicle unit is a dichotomous variable, such that Yij = 1 means high severity (i.e., injury
crash), while Yij = 0 represents low severity (i.e., no injury crash). The likelihood of Yij = 1
is denoted by πij = Pr

(
Yij = 1

)
which follows a binomial distribution. In level 1 (crash

level), the likelihood of Yij = 1 is described as follows:

log it(πij) = log

(
πij

1 − πij

)
= β0j +

P

∑
p=1

βpjXpij + εij (1)

where β0j is the level 1 intercept; βpj is the regression coefficient for Xpij; Xpij is the value of
the pth independent variable for crash i for vehicle unit j; P is the number of independent
variables in level1; εij is the disturbance term with mean zero and variance to be estimated.

In the context of the hierarchical model, the within-crash correlation is specified in the
“Vehicle company & year” level (level 2) as:

β0j = γ00 +
Q

∑
q=1

γ0qZqj + µ0j (2)

βpj = γp0 + µpj (3)

where γ00 and γp0 are estimated intercepts in the “Vehicle company & year”-unit level;
Zqj is the qth independent variable for “Vehicle company & year”-unit j; µ0j and µpj are
the random effects varying across “Vehicle company & year”-units for the crash-level
intercept and covariate p, and they are assumed as normal distributions with means zero
and variances σ2

0 and σ2
k , respectively.

Both β0j and βpj vary with the different “Vehicle company & year” units, in which
two components are combined to decide the coefficient values. First, it’s assumed that they
have linear relationships with the level 2 covariates Zqj, because various environmental,
road, and vehicle features may result in different severity levels. Second, besides the fixed
parts which depend on the level 2 covariates Zqj, random effects are also included (µ0j and
µpj). The random effects between “Vehicle company & year” units only vary across the
different units, but in the same unit, they are constant for the crash. Previous studies have
shown that considering these random effects, potential random variations across “Vehicle
company & year” units are allowed and correlations within them can be explained [46,47].
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The full model with Equation (4) is the hierarchical model with both random intercept
and random slope [30].

log it(πij) = log

(
πij

1 − πij

)
= γ00 +

Q

∑
q=1

γ0qZqj + µ0j +
P

∑
p=1

γp0Xpij +
P

∑
p=1

µpjXpij + εij (4)

2.2.2. Bayesian Inference

To calibrate the hierarchical model, this study employed the Bayesian inference tech-
nique. The Bayesian inference technique is a prevailing way to explicitly model the hierar-
chical structure in which prior beliefs and the likelihood function of data at hand are fused
to obtain the marginal posterior distribution. The distinctions between fixed and random
effects disappear since all effects are now considered to be random and the hierarchical
structure is accounted for. Compared to classical frequentist methods, Bayesian inference
shows a lot of theoretical and practical advantages in road safety analysis, such as the
good capability to handle small size data and deal with missing data commonly occurred
in crash records, allowing for a comparison of any number of non-nested models, and
considering hierarchies in the model [48–50].

Prior distribution is a material part of Bayesian inference, and the following three
kinds of prior distribution are commonly used [51]: (a) strong informative prior distribu-
tions based on expert knowledge or previous investigation; (b) weak informative prior
distributions that do not dictate the posterior distribution significantly but are able to
prevent inappropriate inferences; (c) uniform priors that could interpret evidence from the
data probabilistically [34,35,45,52,53]. In the absence of prior information, uniform priors
were used in this study. For the regression coefficients (γ00, γ0q, and γp0), normal distribu-
tions (0, 1000) were assumed. A study of Fink [54] showed that the conditional conjugacy
property of inverse-gamma priors suggested more flexible mathematical properties, so the
variance σ2

0 and σ2
k were assumed to be distributed as Gamma (0.001, 0.001). As previously

mentioned in Section 2.2.1, σ2
0 and σ2

k are the variances of µ0j and µpj, respectively, and
µ0j and µpj are the random effects varying across “Vehicle company & year”-units for the
crash-level intercept and covariate.

A well-known computing approach for Bayesian inference, the Markov chain Monte
Carlo (MCMC) method [55], was used in this study to better approximate the target
posterior distribution. Two parallel MCMC chains were initiated for each model, and
5000 starting iterations in each chain were dropped as burn-in, whereas 10,000 iterations in
each chain were used for generating the descriptive statistics for posterior estimates. In
summary, the posterior estimates were based on 20,000 MCMC iterations (10,000 in each of
the chains). The MCMC chains were reasonably converged since the ratio of pooled- and
within-chain interval widths were around 1 [56].

To better interpret the results of the hierarchical Bayesian models, the odds ratios were
calculated (Odds ratio = eγ) to show relative likelihoods. For example, in the analysis of
crash severity, with the independent variable switching from 0 to 1, the odds of high severity
crash increases/decreases by a value of |eγ − 1|. This study used the 95% Bayesian credible
interval (95% BCI) to examine the significance of variables. The coefficient estimations were
identified to be significant if the 95% BCIs didn’t cover “0” or the 95% BCIs of odds ratio
didn’t cover “1”.

In this study, Watanabe-Akaike Information Criterion (WAIC) [57] and Leave-one-out
cross-validation (LOO) [58] were used to measure the model performance and select the
best fitting model. LOO and WAIC have various advantages over simpler estimates of
predictive error. WAIC can be viewed as an improvement on the deviance information
criterion (DIC). It has been known that DIC has some problems for Bayesian models, which
arises in part from not being fully Bayesian where DIC is based on a point estimate [59].
Distinct from DIC, WAIC is fully Bayesian in that it uses the entire posterior distribution,
and it is asymptotically equal to Bayesian cross-validation. However, the study of Vehtari
et al. [60] showed that LOO was recommended to be tried in the finite case with influential
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observations. Thus, in our study, the best-fitting models were those with the lowest WAIC
and LOO values.

The hierarchical Bayesian approach was performed to model the binary outcome using
the “brm” package in the statistical software R (version 3.4.4).

3. Results

As shown in Figure 2, in the conventional driving mode, the proportion of crashes
with injury was 18%, similar to that of the autonomous driving mode (22%).

Figure 2. Statistical results of crash severity in both driving modes.

The best-fitting hierarchical Bayesian models with the lowest WAIC and LOO for
crash severity in both driving modes were finally selected. The model for the autonomous
mode included a total of eight explanatory variables, and that for the conventional mode
contained seven explanatory variables. All these included variables were statistically
significant and removing any of them would reduce the systemic utility of these models.
Tables 3 and 4 presents the results of the two hierarchical Bayesian models. To represent
the data more intuitively, odds ratios (OR) are plotted in Figures 3 and 4.

Figure 3. Odds Ratio of the influencing factors for crash severity in the autonomous mode.
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Figure 4. Odds Ratio of the influencing factors for crash severity in the conventional mode.

Table 3. The hierarchical Bayesian model for crash severity in the autonomous mode.

Parameters Estimate
(std Error)

Odds Ratio
(95% Confidence

Interval)

Fixed Effects
Environmental variables

Daytime −0.23 (0.08) 0.79 (0.66~0.96)
Night * 0 1

Daily visitors’ flowrate (DVF) < 3418
person-times −0.16 (0.10) 0.85 (0.76~0.95)

DVF > 40,040 person-times * 0 1
Raining presence 0.09 (0.27) 1.09 (1.03~1.16)
Raining absence * 0 1
Mixed land use # 0.17 (0.12) 1.19 (1.02~1.38)

Residential land use * 0 1
Muni line presence 0.39 (0.09) 1.48 (1.06~2.05)
Muni line absence * 0 1

Road variables
Bike lanes presence 0.20 (0.09) 1.22 (1.08~1.38)
Bike lanes absence * 0 1

Two sidewalks presence 0.24 (0.17) 1.27 (1.03~1.57)
Absence or only one sidewalk * 0 1

Vehicle variables
Vehicle state-moving 0.45 (0.28) 1.57 (1.13~2.18)

Vehicle state-stopped * 0 1
Intercept (level 1) 0.45 (0.32) 1.57 (1.01~2.44)
Random effects

Vehicle state-moving 0.16 (0.13) 1.17 (1.00~1.38)
Intercept (Vehicle company & year) 0.09 (0.10) 1.09 (1.06~1.13)

WAIC 62.8
LOO 63.4

* denotes the reference group; # denotes the random variable.
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Table 4. The hierarchical Bayesian model for crash severity in the conventional mode.

Parameters Estimate
(std Error)

Odds Ratio
(95% Confidence

Interval)

Fixed effects
Environmental variables

Daily visitors’ flowrate (DVF) < 3418
person-times # −1.01 (0.28) 0.36 (0.21~0.64)

3418 < DVF < 11,982 person-times −0.96 (0.22) 0.38 (0.25~0.59)
11,982 < DVF < 40,040 person-times −0.89 (0.21) 0.41 (0.27~0.61)

DVF > 40040 person-times * 0 1
Road variables

Number of lanes at crash site > 2 0.17 (0.10) 1.19 (1.01~1.40)
Number of lanes at crash site ≤ 2 * 0 1

Bike lanes presence 0.35 (0.09) 1.42 (1.19~1.70)
Bike lanes absence * 0 1

Vehicle variables
Turning movement presence 0.20 (0.10) 1.22 (1.02~1.51)
Turning movement absence * 0 1

Vehicle state-moving 0.22 (0.11) 1.25 (1.02~1.57)
Vehicle state-stopped * 0 1

Intercept (level 1) 0.74 (0.23) 2.09 (1.32~3.19)
Random effects

DVF < 3418 person-times 0.30 (0.23) 1.35 (1.03~2.53)
Intercept (Vehicle company & year) 0.21 (0.28) 1.23 (1.01~3.63)

WAIC 52.6
LOO 53.3

* denotes the reference group; # denotes the random variable.

For the autonomous mode, raining presence, mixed land use, muni line presence,
bike lanes presence, two sidewalks presence, and moving vehicle state were all positively
associated with the crash severity, whereas daytime, and daily visitors’ flowrate (DVF) less
than 3418 person-times had negative effects on crash severity.

For the conventional mode, the number of lanes at the crash site, bike lanes presence,
turning movement presence, moving, and vehicle state all positively affected crash severity,
whereas DVFs (<3418, 3418~11,982, and 11,982~40,040 person-times) were negatively
associated with crash severity.

Detailed explanations of these influencing variables are provided below from the
following three aspects. Additionally, Figure 5 demonstrates the comparison of the same
influencing factors for injury crash propensity in the autonomous driving mode and
conventional driving mode. In Figure 5, the posterior distribution of each influencing
factor’s OR is plotted.
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Figure 5. Comparison of the same influencing factors for crash severity in autonomous and conven-
tional driving modes.

4. Discussion
4.1. Impacting Factors on Crash Severity
4.1.1. Environmental Variables

The results revealed a positive, statistically significant correlation between the popula-
tion flow size and crash severity in both driving modes. Compared to the maximum level of
DVF (>11,982 person-times), the likelihood of high severity decreased in the other three lev-
els in the conventional mode by 64%, 62%, and 59%, respectively. (DVF < 3418 person-times,
OR = 0.36; DVF 3418~11,982 person-times, OR = 0.38; DVF 11,982~40,040 person-times,
OR = 0.41) (See Table 4 and Figure 4). As shown in Table 3 and Figure 3, when compared to
the maximum level of DVF, there was a decrease of 15% in the likelihood of high crash sever-
ity if DVF was less than 3418 person-times in the autonomous driving mode (OR = 0.85).
The effect of other levels of DVF in this mode was not statistically significant. Figure 5a
showed the different impacts of the minimum level of DVF on injury crash propensity in
different driving modes.

As the results showed, injury crashes were more likely to occur in areas with higher
DVF. There are often great safety hazards in densely populated areas such as bus stations,
schools, and residential areas [61]. For the conventional driving mode, passing through
these areas, nervousness, and anxiety of drivers may increase, which would affect the driv-
ing behavior [62]. For the autonomous driving mode, crowded areas would significantly
increase the conflict points between vehicles, other transportation, and pedestrians, and
the perceived ability of AVs may be influenced. However, AVs can reduce crash severity
by avoiding driver errors (e.g., speeding, fatigue driving, aggressive driving, distracted
driving, slow reaction times, etc.). Compared with humans, AVs are supposed to have
better deceleration performance, leading to low collision speed in crowed sites (with higher
DVF). Therefore, the impact of DVF on crash severity in the autonomous driving mode is
smaller than that in the conventional driving mode.

Compared with the conventional driving mode, several other factors also significantly
affected the likelihood of high crash severity in the autonomous mode (See Table 3 and
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Figure 3). The presence of muni lines increased the likelihood of high crash severity by
48% (OR = 1.48). Raining increased the likelihood of high crash severity in the crash by 9%
(OR = 1.09). Compared to residential land use, there was a 19% growth in the possibility of
high crash severity in mixed land-use types (OR = 1.19). Relative to the nighttime, daytime
would reduce the likelihood of high crash severity in the crash by 21% (OR = 0.79).

The existence of the muni line may lead to a more complicated traffic environment in
which buses, conventional vehicles, and AVs are mixed. As mentioned before, AVs may
lead to some problems in the mixed flow. Previous studies suggest that AVs should be
combined with Public Transportation (PT) systems to reduce labor costs, expand service
hours and optimize the spatial and temporal allocation of the PT services [63,64]. However,
the safety issues caused by the combination of AVs and PT should not be ignored in the
current stage of AVs. In addition, mixed land-use patterns typically exhibit diverse land-use
types leading to complex roadway layouts, line of sight occlusion, and other problems. A
study also found that AVs may have critical issues in the case of complex environments [65].
Human drivers have a certain understanding of the general structure of each kind of thing
on the road, and they can rapidly imagine the shape of the occluded object and deal with
the occlusion problems well. However, for AVs, this is a problem that may lead to untimely
braking. At present, there are still problems in the total factor recognition and perception
of current autonomous driving vehicles in complex environments, one of which is that
autonomous driving vehicles cannot effectively and timely identify all the factors that may
affect driving safety.

The camera system on AVs depends on the brightness of the scene to determine
the intensity of image pixels [66]. Since night vision images have fewer texture details
and low contrast, dim light in the evening would reduce the ability of AVs to recognize
the surrounding scene and lack sufficient reaction time to avoid serious crashes [67,68].
Moreover, rain may obscure the edges of objects, making them difficult to recognizable.
Although radar may not be affected by dark conditions or rain, vulnerable road users
cannot be identified accurately [69]. Human drivers also have poor visualization at night,
however, most of them would be more vigilant, which may lead to relatively low speeds
to avoid serious crashes. Visibility may provide safety improvement with the advance of
machine vision and digital image processing techniques. In addition, roadway, intersection,
and personal lighting, reflective materials, night vision, and educational interventions are
also important [70].

4.1.2. Road Variables

The existence of bicycle lanes increased the likelihood of the high crash severity
compared to the road with only motor lanes in both driving modes. The likelihood
increased by 22% in the autonomous driving mode (OR = 1.22), while in the conventional
mode, there was an increase of 42% (OR = 1.42), representing a greater positive impact (See
Tables 3 and 4, and Figure 5b). The existence of bicycle lanes means there are more non-
motor vehicles in these sections. Compared with the collision between vehicles, non-motor
vehicles are more frequently injured in crashes. AVs’ technologically advanced sensors and
algorithms, and the potential ability of bicycles to communicate with AVs via transponders,
are viewed as reasons for greater ability to perceive cyclists [71]. Thus, human drivers are
more vulnerable to the emergence of bicycles on the road.

As shown in Table 3 and Figure 3, compared to no crosswalk roadway or road with
only one side crosswalk, the likelihood of high crash severity was increased at roadways
with crosswalks on both sides by 27% in the autonomous driving mode (OR = 1.27). Lots
of research about the interaction between pedestrians and AVs have shown that the ability
of AVs to detect and understand responses from pedestrians and respond appropriately is
not yet complete [72,73]. Without pedestrian-to-driver communication (e.g., eye contact),
pedestrian behavior becomes more unpredictable [74].

As for the conventional driving mode, compared with the number of lanes at the crash
site less than 2, the possibility of high crash severity raised by 19% (OR = 1.19) if the number



Int. J. Environ. Res. Public Health 2022, 19, 11358 15 of 22

of lanes was more than 2 (See Table 4 and Figure 4). As with previous studies, more lanes
are positively related to higher crash severity, since they commonly mean higher speed,
which may cause higher crash severity [75,76]. The advantages of AVs, such as avoiding
driver errors and better deceleration performance, make them perform better than human
drivers in the multi-lane scenario.

4.1.3. Vehicle Variables

The state of the vehicle impacted the likelihood of the high crash severity in both
driving modes. When compared to stopped vehicles, the possibility of the high crash
severity rose by 25% with moving vehicles in the conventional mode (OR = 1.25). In the
autonomous mode, there was a 57% increase (OR = 1.57) (See Table 3, Table 4, and Figure 5c).
From the perspective of kinetic energy, it is easy to explain that moving vehicles would
cause more serious consequences. However, the different degrees of increase in the two
modes are worthier attention. Previous studies have reported that AVs have a significant
impact on the uncertainty, conflict, and stability of mixed traffic, which are highly associated
with the severity of crashes [77,78]. Although the safety performance could substantially
improve with a high penetration of AVs, AVs would adversely affect the traffic environment
at lower penetration [79]. Moreover, drivers may game with the limitations of AVs and
behave more aggressively in their vicinity [80]. Therefore, popularizing AV knowledge for
conventional drivers and improving their vigilance in mixed traffic may help reduce crash
severity. While studying car-following in mixed traffic, the interaction between human
drivers and AVs should be paid more attention [81].

As shown in Table 4 and Figure 4, compared with vehicles operating straight ahead, the
likelihood of the high crash severity rose by 22% (OR = 1.22) when the vehicle was making
a turning motion in the conventional mode. Turning movements are usually associated
with much higher attention than normal moving [82]. AVs with powerful perception and
decision-making systems may perform better than human drivers.

4.2. Model Comparison

To examine whether the hierarchical Bayesian models with random intercept and
random slopes are superior, this study made a comparison among models with different
structures. Overall, models in both driving modes can be grouped into the following
categories: (a) Bayesian logistic regression models (with only fixed effects) (b) hierarchical
Bayesian models with random intercept (c) hierarchical Bayesian models with both random
intercept and random slopes.

The lower the WAIC or LOO value, the better the model. As shown in Table 5,
hierarchical Bayesian models with both random intercept and random slopes performed
better than the other two kinds of models with lower WAIC and LOO.

Table 5. WAIC and LOO of hierarchical Bayesian models with different structures.

Bayesian Logistic
Regression Models (with

Only Fixed Effects)

Hierarchical Bayesian
Models with Random

Intercept

Hierarchical Bayesian
Models with Both

Random Intercept and
Random Slopes

WAIC LOO WAIC LOO WAIC LOO

Models for crash severity in the
autonomous mode 74.4 76.5 64.5 64.9 62.8 63.4

Models for crash severity in the
conventional mode 60.9 61.9 53.3 53.7 52.6 53.3

In addition, the differences between models with different observation units were
also explored. As shown in Figure 6a, in this study, vehicles with the same vehicle year
from the same company (i.e., the “Vehicle company & year” unit) were considered as a
cluster (Level 2) to alleviate the effects of unobserved heterogeneity, and there were several
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sub-clusters per cluster, i.e., each crash (level 1). To consider the possible interconnect role
of collision manner in the relationship between independent variables and crash severity,
“Crash type” was taken as the criterion for classifying clusters (See Figure 6b). Since studies
have shown that robust parameter estimation cannot be made in the hierarchical Bayesian
model if clusters in level 2 were too little [83], “Crash type” was not a dichotomous variable
here, but was classified into 6 groups, including “Rear-end”, “Sideswipe”, “Head-on”,
“Hit pedestrian”, “Hit non-motor vehicle”, and “Others”. Moreover, while considering the
unobserved heterogeneities caused by both “Vehicle company & year” and “Crash type”
(See Figure 6c), another hierarchical Bayesian model with two clusters was also attempted.

Figure 6. The structure of hierarchical Bayesian model.

As shown in Table 6, the 2-level hierarchical Bayesian models with “Vehicle company
& year” unit as level 2 had the lowest WAIC and LOO values, indicating that it performed
better than the other two kinds of models.
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Table 6. WAIC and LOO of hierarchical Bayesian models with different observation units.

The 2-Level Hierarchical
Bayesian Models with

“Vehicle Company & Year”
Unit as Level 2

The 2-Level Hierarchical
Bayesian Models with
“Crash Type” Unit as

Level 2

A 2-Level Model with
Two Clusters of “Crash

Type” and “Vehicle
Company & Year”

WAIC LOO WAIC LOO WAIC LOO

Models for crash severity in the
autonomous mode 62.8 63.4 65.1 66.0 63.1 63.8

Models for crash severity in the
conventional mode 52.6 53.3 54.7 55.2 53.5 54.0

4.3. Practical Research Implications

The findings of this study have several practical implications:

(1) This study can help to improve driving safety in both conventional and autonomous
driving modes. AVs are a complex combination of various hardware and software
with high costs. Strict laws and regulations should be formulated to specify the road
section and time of AVs for testing and driving [5]. For example, the testing of AVs
needs to be conducted in areas with a complex environment or at night. In addition,
manufacturers should face up to the current situation that AVs are still unable to
effectively deal with all factors affecting driving safety and eliminate exaggerated
publicity. More importantly, despite the importance of economic benefit and efficiency
for manufacturers, the improvement of the safety of AVs should not be ignored.
Different influencing factors for crashes mean different perceptions and decision logic.
When AVs and conventional vehicles are mixed on the road, the driving environment
may be more complex, and the risk of crashes may increase. Improving the technology
of autonomous driving will help to reduce the collision between them. Additionally,
as for the conventional driving mode, drivers’ behavior needs to be attached more
importance. In a scene with more pedestrians or complex traffic flow, crashes in
the conventional mode will be decreased by setting traffic signs and lines, violation
penalties, and other means [84,85];

(2) This study shows some existing problems of autonomous driving vehicles, which are
helpful for the intelligent transformation of highways and vehicles. With the popular-
ity of the Internet of Things (IoT), vehicle information and all kinds of environmental
data can be collected in real-time through the wide application of artificial intelligence
and big data [86,87]. At present, the intellectualization of highways should focus
more on complex road environments and solving the occlusion problem, so as to
provide clearer information for vehicles. Learning ability and adaptability need to be
improved for AVs, enabling them to become a moving “intelligent agent”. Each “in-
telligent agent” can coordinate their respective routes, speeds, and distances between
other vehicles to independently cope with all kinds of road conditions and unexpected
situations [88,89]. In addition, the integration of multiple perception systems, such
as visual perception systems (cameras and visual sensors), laser perception systems
(laser radar), and microwave perception systems (millimeter-wave radar), will also
help to reduce autonomous driving crashes;

(3) The content of this study has a certain reference value for the research of human-
computer interaction. Semi-AVs will occupy the majority of the market for a long
time in the future, however, it is difficult to define when the driver or vehicle should
be responsible for driving. At present, AVs require human drivers to maintain control
of vehicles, during the whole driving process. However, when an emergency occurs,
drivers may not be able to take charge of vehicles immediately because of carelessness
or gradual trust in the autonomous driving system. The warning systems shall be
further improved for AVs. The core of human-computer interaction is coordination
and complementarity [90,91]. Since autonomous driving technology is not yet fully
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mature, semi-autonomous driving can be used as a supplement to traditional driving
to reduce crashes. The human-computer conflict caused by redundant input also
needs to be avoided [92,93].

5. Conclusions

This study aims to analyze the divergent influences of factors on crashes under the
autonomous driving mode and the conventional driving mode. By using the hierarchical
Bayesian approach to consider unobserved heterogeneities, crash severity was analyzed.
The results showed that there were significant differences in the severity of influencing
factors under different driving modes.

Although some influencing factors had the same positive or negative effects on crash
severity under both driving modes, their degrees were different. The impact of daily
visitors’ flowrate (DVF) on crash severity in the autonomous driving mode was smaller
than that in the conventional mode since equipped with advanced sensing equipment, AVs
can sense a longer distance and were superior to humans in the recognition of specific
targets (e.g., face, text, etc.) [94]. In addition, the presence of bike lanes would lead to
a great increase in the severity of crashes in the conventional driving model, while the
moving vehicle state had a greater impact on the crash severity of autonomous driving.

More influencing factors only had a significant impact on one of the driving modes,
which was also worthy of analysis. To be specific, raining, mixed land use, the presence of
the muni line, and driving at night would cause high injury severity in the autonomous
mode, but in the conventional driving mode, their impacts were not significant. The
problems for autonomous driving vehicles in the total factor recognition and completion of
vision occlusion in complex environments may lead to this result. Furthermore, more lanes
would increase the possibility of high crash severity in the conventional mode because of
human drivers’ wrong decisions, but AVs can effectively avoid that.

There are some limitations in this study that should be addressed in future work.
Although the Traffic Collision Involving an Autonomous Vehicle Reports (OL 316) contain
much useful information, some important data, such as traffic flow, pre-crash vehicle
kinematic data, driver demographics, driver perception, etc., were not recorded in the
report. This study used Bayesian inference to reduce the influence of a small sample,
but more crash reports will of course lead to more profound and generalizable insights.
Additionally, sufficient crash data makes it possible to consider more potential relationships,
such as cross-level interactions of impacting factors. Moreover, it should be noted that
the AV’s behavior may be timid in the test stage on public roads compared to their future
behavior. With the maturity and commercialization of AVs throughout the world, an
updated evaluation will be required. With the AV crash data constantly updated, we will
continue to add new crashes and more features to make a more detailed classification of the
crash severity and improve the accuracy and effectiveness of our models in future research.
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