55 research outputs found

    The Formation and Properties of Thin Lipid Membranes from HK and LK Sheep Red Cell Lipids

    Get PDF
    Lipids were obtained from high potassium (HK) and low potassium (LK) sheep red cells by sequential extraction of the erythrocytes with isopropanol-chloroform, chloroform-methanol-0.1 M KCl, and chloroform. The extract contained cholesterol and phospholipid in a molar ratio of 0.8:1.0, and less than 1% protein contaminant. Stable thin lipid membranes separating two aqueous compartments were formed from an erythrocyte lipid-hydrocarbon solution, and had an electrical resistance of ∼108 ohm-cm2 and a capacitance of 0.38–0.4 µf/cm2. From the capacitance values, membrane thickness was estimated to be 46–132 A, depending on the assumed value for the dielectric constant (2.0–4.5). Membrane voltage was recorded in the presence of ionic (NaCl and/or KCl) concentration gradients in the solutions bathing the membrane. The permeability of the membrane to Na+, K+, and Cl- (expressed as the transference number, Tion) was computed from the steady-state membrane voltage and the activity ratio of the ions in the compartments bathing the membrane. TNa and TK were approximately equal (∼0.8) and considerably greater than TCl (∼0.2). The ionic transference numbers were independent of temperature, the hydrocarbon solvent, the osmolarity of the solutions bathing the membranes, and the cholesterol content of the membranes, over the range 21–38°C. The high degree of membrane cation selectivity was tentatively attributed to the negatively charged phospholipids (phosphatidylethanolamine and phosphatidylserine) present in the lipid extract

    Spatiotemporal coordination of cell division and growth during organ morphogenesis

    Get PDF
    A developing plant organ exhibits complex spatiotemporal patterns of growth, cell division, cell size, cell shape, and organ shape. Explaining these patterns presents a challenge because of their dynamics and cross-correlations, which can make it difficult to disentangle causes from effects. To address these problems, we used live imaging to determine the spatiotemporal patterns of leaf growth and division in different genetic and tissue contexts. In the simplifying background of the speechless (spch) mutant, which lacks stomatal lineages, the epidermal cell layer exhibits defined patterns of division, cell size, cell shape, and growth along the proximodistal and mediolateral axes. The patterns and correlations are distinctive from those observed in the connected subepidermal layer and also different from the epidermal layer of wild type. Through computational modelling we show that the results can be accounted for by a dual control model in which spatiotemporal control operates on both growth and cell division, with cross-connections between them. The interactions between resulting growth and division patterns lead to a dynamic distributions of cell sizes and shapes within a deforming leaf. By modulating parameters of the model, we illustrate how phenotypes with correlated changes in cell size, cell number, and organ size may be generated. The model thus provides an integrated view of growth and division that can act as a framework for further experimental study

    Formation and Shaping of the Antirrhinum Flower through Modulation of the CUP Boundary Gene

    Get PDF
    Boundary domain genes, expressed within or around organ primordia, play a key role in the formation, shaping, and subdivision of planar plant organs, such as leaves. However, the role of boundary genes in formation of more elaborate 3D structures, which also derive from organ primordia, remains unclear. Here we analyze the role of the boundary domain gene CUPULIFORMIS (CUP) in formation of the ornate Antirrhinum flower shape. We show that CUP expression becomes cleared from boundary subdomains between petal primordia, most likely contributing to formation of congenitally fused petals (sympetally) and modulation of growth at sinuses. At later stages, CUP is activated by dorsoventral genes in an intermediary region of the corolla. In contrast to its role at organ boundaries, intermediary CUP activity leads to growth promotion rather than repression and formation of the palate, lip, and characteristic folds of the closed Antirrhinum flower. Intermediary expression of CUP homologs is also observed in related sympetalous species, Linaria and Mimulus, suggesting that changes in boundary gene activity have played a key role in the development and evolution of diverse 3D plant shapes

    Automatic nystagmus detection and quantification in long-term continuous eye-movement data

    Get PDF
    Symptoms of dizziness or imbalance are frequently reported by people over 65. Dizziness is usually episodic and can have many causes, making diagnosis problematic. When it is due to inner-ear malfunctions, it is usually accompanied by abnormal eye-movements called nystagmus. The CAVA (Continuous Ambulatory Vestibular Assessment) device has been developed to provide continuous monitoring of eye-movements to gain insight into the physiological parameters present during a dizziness attack. In this paper, we describe novel algorithms for detecting short periods of artificially induced nystagmus from the long-term eye movement data collected by the CAVA device. In a blinded trial involving 17 healthy subjects, each participant induced nystagmus artificially on up to eight occasions by watching a short video on a VR headset. Our algorithms detected these short periods with an accuracy of 98.77%. Additionally, data relating to vestibular induced nystagmus was collected, analysed and then compared to a conventional technique for assessing nystagmus during caloric testing. The results show that a range of nystagmus can be identified and quantified using computational methods applied to long-term eye-movement data captured by the CAVA device

    Microcomputers to control the pH of growing micro-organisms

    No full text
    • …
    corecore