1,490 research outputs found

    Hypernetwork functional image representation

    Full text link
    Motivated by the human way of memorizing images we introduce their functional representation, where an image is represented by a neural network. For this purpose, we construct a hypernetwork which takes an image and returns weights to the target network, which maps point from the plane (representing positions of the pixel) into its corresponding color in the image. Since the obtained representation is continuous, one can easily inspect the image at various resolutions and perform on it arbitrary continuous operations. Moreover, by inspecting interpolations we show that such representation has some properties characteristic to generative models. To evaluate the proposed mechanism experimentally, we apply it to image super-resolution problem. Despite using a single model for various scaling factors, we obtained results comparable to existing super-resolution methods

    The WiFeS S7 AGN survey: Current status and recent results on NGC 6300

    Full text link
    The Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7) is a targeted survey probing the narrow-line regions (NLRs) of a representative sample of ~140 nearby (z<0.02) Seyfert galaxies by means of optical integral field spectroscopy. The survey is based on a homogeneous data set observed using the Wide Field Spectrograph WiFeS. The data provide a 25x38 arcsec2^2 field-of-view around the galaxy centre at typically ~1.5 arcsec spatial resolution and cover a wavelength range between ~3400 - 7100 A˚\AA at spectral resolutions of ~100 km s1^{-1} and ~50 km s1^{-1} in the blue and red parts, respectively. The survey is primarily designed to study gas excitation and star formation around AGN, with a special focus on the shape of the AGN ionising continuum, the interaction between radio jets and the NLR gas, and the nature of nuclear LINER emission. We provide an overview of the current status of S7-based results and present new results for NGC 6300.Comment: 5 pages, 1 figure, Refereed Proceeding of the "The Universe of Digital Sky Surveys" conference held at the INAF - Observatory of Capodimonte, Naples, on 25th-28th november 2014, to be published on Astrophysics and Space Science Proceedings, edited by Longo, Napolitano, Marconi, Paolillo, Iodic

    Radio Galaxy Zoo: Machine learning for radio source host galaxy cross-identification

    Get PDF
    We consider the problem of determining the host galaxies of radio sources by cross-identification. This has traditionally been done manually, which will be intractable for wide-area radio surveys like the Evolutionary Map of the Universe (EMU). Automated cross-identification will be critical for these future surveys, and machine learning may provide the tools to develop such methods. We apply a standard approach from computer vision to cross-identification, introducing one possible way of automating this problem, and explore the pros and cons of this approach. We apply our method to the 1.4 GHz Australian Telescope Large Area Survey (ATLAS) observations of the Chandra Deep Field South (CDFS) and the ESO Large Area ISO Survey South 1 (ELAIS-S1) fields by cross-identifying them with the Spitzer Wide-area Infrared Extragalactic (SWIRE) survey. We train our method with two sets of data: expert cross-identifications of CDFS from the initial ATLAS data release and crowdsourced cross-identifications of CDFS from Radio Galaxy Zoo. We found that a simple strategy of cross-identifying a radio component with the nearest galaxy performs comparably to our more complex methods, though our estimated best-case performance is near 100 per cent. ATLAS contains 87 complex radio sources that have been cross-identified by experts, so there are not enough complex examples to learn how to cross-identify them accurately. Much larger datasets are therefore required for training methods like ours. We also show that training our method on Radio Galaxy Zoo cross-identifications gives comparable results to training on expert cross-identifications, demonstrating the value of crowdsourced training data

    Examining the Polymorphisms in the Hypoxia Pathway Genes in Relation to Outcome in Colorectal Cancer

    Get PDF
    Introduction Colorectal cancer is a common malignancy. Identification of genetic prognostic markers may help prognostic estimations in colorectal cancer. Genes that regulate response to hypoxia and other genes that are regulated under the hypoxic conditions have been shown to play roles in cancer progression. In this study, we hypothesized that genetic variations in the hypoxia pathway genes were associated with the risk of outcome in colorectal cancer patients. Methods This study was performed in two phases. In the first phase, 49 SNPs from six hypoxia pathway genes (HIF1A, HIF1B, HIF2A, LOX, MIF and CXCL12) in 272 colorectal cancer patients were analyzed. In the second phase, 77 SNPs from seven hypoxia pathway genes (HIF1A, HIF1B, HIF2A, HIF2B, HIF3A, LOX and CXCL12) were analyzed in an additional cohort of 535 patients. Kaplan Meier, Cox univariate and multivariable regression analyses were performed to analyze the relationship between the SNPs and overall survival (OS), disease free survival (DFS) or disease specific survival (DSS). Since this was a hypothesis-generating study, no correction for multiple testing was applied. Results In phase I, one SNP (HIF2A rs11125070) was found to be associated with DFS in multivariable analysis; yet association of a proxy polymorphism (HIF2A rs4953342) was not detected in the phase II patient cohort. In phase II, associations of two SNPs (HIF2A rs4953352 and HIF2B rs12593988) were significant in both OS and DFS multivariable analyses. However, association of HIF2A rs4953352 was not replicated in the phase I cohort using a proxy SNP (HIF2A rs6706003). Conclusion Overall, our study did not find a convincing evidence of association of the investigated polymorphisms with the disease outcomes in colorectal cance

    Characterization of the hot Neptune GJ 436b with Spitzer and ground-based observations

    Full text link
    We present Spitzer Space Telescope infrared photometry of a secondary eclipse of the hot Neptune GJ436b. The observations were obtained using the 8-micron band of the InfraRed Array Camera (IRAC). The data spanning the predicted time of secondary eclipse show a clear flux decrement with the expected shape and duration. The observed eclipse depth of 0.58 mmag allows us to estimate a blackbody brightness temperature of T_p = 717 +- 35 K at 8 microns. We compare this infrared flux measurement to a model of the planetary thermal emission, and show that this model reproduces properly the observed flux decrement. The timing of the secondary eclipse confirms the non-zero orbital eccentricity of the planet, while also increasing its precision (e = 0.14 +- 0.01). Additional new spectroscopic and photometric observations allow us to estimate the rotational period of the star and to assess the potential presence of another planet.Comment: Accepted for publication in A&A on 11/09/2007; 7 pages, 6 figure

    Colorectal cancer linkage on chromosomes 4q21, 8q13, 12q24, and 15q22

    Get PDF
    A substantial proportion of familial colorectal cancer (CRC) is not a consequence of known susceptibility loci, such as mismatch repair (MMR) genes, supporting the existence of additional loci. To identify novel CRC loci, we conducted a genome-wide linkage scan in 356 white families with no evidence of defective MMR (i.e., no loss of tumor expression of MMR proteins, no microsatellite instability (MSI)-high tumors, or no evidence of linkage to MMR genes). Families were ascertained via the Colon Cancer Family Registry multi-site NCI-supported consortium (Colon CFR), the City of Hope Comprehensive Cancer Center, and Memorial University of Newfoundland. A total of 1,612 individuals (average 5.0 per family including 2.2 affected) were genotyped using genome-wide single nucleotide polymorphism linkage arrays; parametric and non-parametric linkage analysis used MERLIN in a priori-defined family groups. Five lod scores greater than 3.0 were observed assuming heterogeneity. The greatest were among families with mean age of diagnosis less than 50 years at 4q21.1 (dominant HLOD = 4.51, α = 0.84, 145.40 cM, rs10518142) and among all families at 12q24.32 (dominant HLOD = 3.60, α = 0.48, 285.15 cM, rs952093). Among families with four or more affected individuals and among clinic-based families, a common peak was observed at 15q22.31 (101.40 cM, rs1477798; dominant HLOD = 3.07, α = 0.29; dominant HLOD = 3.03, α = 0.32, respectively). Analysis of families with only two affected individuals yielded a peak at 8q13.2 (recessive HLOD = 3.02, α = 0.51, 132.52 cM, rs1319036). These previously unreported linkage peaks demonstrate the continued utility of family-based data in complex traits and suggest that new CRC risk alleles remain to be elucidated. © 2012 Cicek et al

    Use of a dual reporter plasmid to demonstrate bactofection with an attenuated aroa- derivative of Pasteurella multocida b:2

    Get PDF
    A reporter plasmid pSRG has been developed which expresses red fluorescent protein (RFP) from a constitutive prokaryotic promoter within Pasteurella multocida B:2 and green fluorescent protein (GFP) from a constitutive eukaryotic promoter within mammalian cells. This construct has been used to determine the location and viability of the bacteria when moving from the extracellular environment into the intracellular compartment of mammalian cells. Invasion assays with embryonic bovine lung (EBL) cells and an attenuated AroA- derivative of Pasteurella multocida B:2 (strain JRMT12), harbouring the plasmid pSRG, showed that RFP-expressing bacteria could be detected intracellularly at 3 h post-invasion. At this stage, some EBL cells harbouring RFP-expressing bacteria were observed to express GFP simultaneously, indicating release of the plasmid into the intracellular environment. At 5 h post-invasion, more EBL cells were expressing GFP, while still harbouring RFP-expressing bacteria. Concurrently, some EBL cells were shown to express only GFP, indicating loss of viable bacteria within these cells. These experiments proved the functionality of the pSRG dual reporter system and the potential of P. multocida B:2 JRMT12 for bactofection and delivery of a DNA vaccine

    An Adaptive Interacting Wang-Landau Algorithm for Automatic Density Exploration

    Full text link
    While statisticians are well-accustomed to performing exploratory analysis in the modeling stage of an analysis, the notion of conducting preliminary general-purpose exploratory analysis in the Monte Carlo stage (or more generally, the model-fitting stage) of an analysis is an area which we feel deserves much further attention. Towards this aim, this paper proposes a general-purpose algorithm for automatic density exploration. The proposed exploration algorithm combines and expands upon components from various adaptive Markov chain Monte Carlo methods, with the Wang-Landau algorithm at its heart. Additionally, the algorithm is run on interacting parallel chains -- a feature which both decreases computational cost as well as stabilizes the algorithm, improving its ability to explore the density. Performance is studied in several applications. Through a Bayesian variable selection example, the authors demonstrate the convergence gains obtained with interacting chains. The ability of the algorithm's adaptive proposal to induce mode-jumping is illustrated through a trimodal density and a Bayesian mixture modeling application. Lastly, through a 2D Ising model, the authors demonstrate the ability of the algorithm to overcome the high correlations encountered in spatial models.Comment: 33 pages, 20 figures (the supplementary materials are included as appendices
    corecore