192 research outputs found

    Current Characteristics of the Hungarian Nurses’ Workforce

    Get PDF
    Recently WHO called attention to the growing labour shortage of healthcare staff, which can reach 12.9 million by 2035. Almost all European countries struggle with a shortage of nurses. The educational structure of nurses has also changed significantly. The aim of this overview is to review the relevant scientific literature and analyse records ofrhe Hungarian nursing registry in order to predict the nursing workforce tendencies. Relevant English and Hungarian international and national scientific literature (PubMed, Science Direct, Hungarian Medical Bibliography) were identified and illustrated with reliable data (2009–2015) from the national healthcare human resource registry and from Central Statistical Office. A qualitative appraisal was undertaken to select the proper articles by our research team. For processing data, descriptive statistics was used. Although migration of healthcare personnel in Hungary is present, however the official statistics does not mirror a dramatic exodus. The level of nursing education is based on vocational training and on higher education in Hungary. The number of novice nurses is diminishing year-by-year and those nurses who are not working in the Hungarian healthcare sector are eminent. Providing new roles for nurses, e.g., Advanced Practice Registered Nurse, can be one of the solutions for the shortage

    Humid tropical rain forest has expanded into eucalypt forest and savanna over the last 50 years

    Get PDF
    Tropical rain forest expansion and savanna woody vegetation thickening appear to be a global trend, but there remains uncertainty about whether there is a common set of global drivers. Using geographic information techniques, we analyzed aerial photography of five areas in the humid tropics of northeastern Queensland, Australia, taken in the 1950s and 2008, to determine if changes in rain forest extent match those reported for the Australian monsoon tropics using similar techniques. Mapping of the 1950s aerial photography showed that of the combined study area (64,430 ha), 63% was classified as eucalypt forests/woodland and 37% as rain forest. Our mapping revealed that although most boundaries remained stable, there was a net increase of 732 ha of the original rain forest area over the study period, and negligible conversion of rain forest to eucalypt forest/woodland. Statistical modeling, controlling for spatial autocorrelation, indicated distance from preexisting rain forest as the strongest determinant of rain forest expansion. Margin extension had a mean rate across the five sites of 0.6 m per decade. Expansion was greater in tall open forest types but also occurred in shorter, more flammable woodland vegetation types. No correlations were detected with other local variables (aspect, elevation, geology, topography, drainage). Using a geographically weighted mean rate of rain forest margin extension across the whole region, we predict that over 25% of tall open forest (a forest type of high conservation significance) would still remain after 2000 years of rain forest expansion. This slow replacement is due to the convoluted nature of the rain forest boundary and the irregular shape of the tall open forest patches. Our analyses point to the increased concentration of atmospheric CO2 as the most likely global driver of indiscriminate rain forest expansion occurring in northeastern Australia, by increasing tree growth and thereby overriding the effects of fire disturbance

    Transgenic Exosomes for Thymus Regeneration

    Get PDF
    During senescence, Wnt4 expression is down-regulated (unlike their Frizzled receptors), while PPARgamma expression increases in the thymus. Together, these changes allow for thymic degeneration to occur, observed as adipose involution. However, when restored, Wnt4 can efficiently counteract PPARgamma and prevent thymic senescence from developing. The Wnt-pathway activator miR27b has also been reported to inhibit PPARgamma. Our goal was to evaluate the Wnt4 and miR27b levels of Wnt4-transgenic thymic epithelial cell (TEC)-derived exosomes, show their regenerative potential against age-related thymic degeneration, and visualize their binding and distribution both in vitro and in vivo. First, transgenic exosomes were harvested from Wnt4 over-expressing TECs and analyzed by transmission electron microscopy. This unveiled exosomes ranging from 50 to 100 nm in size. Exosomal Wnt4 protein content was assayed by ELISA, while miR27b levels were measured by TaqMan qPCR, both showing elevated levels in transgenic exosomes relative to controls. Of note, kit-purified TEI (total exosome isolate) outperformed UC (ultracentrifugation)-purified exosomes in these parameters. In addition, a significant portion of exosomal Wnt4 proved to be displayed on exosomal surfaces. For functional studies, steroid (Dexamethasone or DX)-induced TECs were used as cellular aging models in which DX-triggered cellular aging was efficiently prevented by transgenic exosomes. Finally, DiI lipid-stained exosomes were applied on the mouse thymus sections and also iv-injected into mice, for in vitro binding and in vivo tracking, respectively. We have observed distinct staining patterns using DiI lipid-stained transgenic exosomes on sections of young and aging murine thymus samples. Moreover, in vivo injected DiI lipid-stained transgenic exosomes showed detectable homing to the thymus. Of note, Wnt4-transgenic exosome homing outperformed control (Wnt5a-transgenic) exosome homing. In summary, our findings indicate that exosomal Wnt4 and miR27b can efficiently counteract thymic adipose involution. Although extrapolation of mouse results to the human setting needs caution, our results appoint transgenic TEC exosomes as promising tools of immune rejuvenation and contribute to the characterization of the immune-modulatory effects of extracellular vesicles in the context of regenerative medicine

    Savanna responses to feral buffalo in Kakadu National Park, Australia

    Get PDF
    Savannas are the major biome of tropical regions, spanning 30% of the Earth\u27s land surface. Tree: grass ratios of savannas are inherently unstable and can be shifted easily by changes in fire, grazing, or climate. We synthesize the history and ecological impacts of the rapid expansion and eradication of an exotic large herbivore, the Asian water buffalo (Bubalus bubalus), on the mesic savannas of Kakadu National Park (KNP), a World Heritage Park located within the Alligator Rivers Region (ARR) of monsoonal north Australia. The study inverts the experience of the Serengeti savannas where grazing herds rapidly declined due to a rinderpest epidemic and then recovered upon disease control. Buffalo entered the ARR by the 1880s, but densities were low until the late 1950s when populations rapidly grew to carrying capacity within a decade. In the 1980s, numbers declined precipitously due to an eradication program. We show evidence that the rapid population expansion and Sudden removal of this exotic herbivore created two ecological cascades by altering around cover abundance and composition, which in turn affected competitive regimes and fuel loads with possible further, long-term effects due to changes in fire regimes. Overall, ecological impacts varied across a north-south gradient in KNP that corresponded to the interacting factors of precipitation, landform, and vegetation type but was also contingent upon the history of buffalo harvest. Floodplains showed the greatest degree of impact during the period of rapid buffalo expansion, but after buffalo removal, they largely reverted to their prior state. Conversely, the woodlands experienced less visible impact during the first cascade. However, in areas of low buffalo harvest and severe impact, there was little recruitment of juvenile trees into the canopy due to the indirect effects of grazing and high frequency of prescribed fires once buffalo were removed. Rain forests were clearly heavily impacted during the first cascade, but the long term consequences of buffalo increase and removal remain unclear. Due to hysteresis effects, the simple removal of an exotic herbivore was not sufficient to return savanna systems to their previous state

    Transgenic Exosomes for Thymus Regeneration

    Get PDF
    During senescence, Wnt4 expression is down-regulated (unlike their Frizzled receptors), while PPARgamma expression increases in the thymus. Together, these changes allow for thymic degeneration to occur, observed as adipose involution. However, when restored, Wnt4 can efficiently counteract PPARgamma and prevent thymic senescence from developing. The Wnt-pathway activator miR27b has also been reported to inhibit PPARgamma. Our goal was to evaluate the Wnt4 and miR27b levels of Wnt4-transgenic thymic epithelial cell (TEC)-derived exosomes, show their regenerative potential against age-related thymic degeneration, and visualize their binding and distribution both in vitro and in vivo. First, transgenic exosomes were harvested from Wnt4 over-expressing TECs and analyzed by transmission electron microscopy. This unveiled exosomes ranging from 50 to 100 nm in size. Exosomal Wnt4 protein content was assayed by ELISA, while miR27b levels were measured by TaqMan qPCR, both showing elevated levels in transgenic exosomes relative to controls. Of note, kit-purified TEI (total exosome isolate) outperformed UC (ultracentrifugation)-purified exosomes in these parameters. In addition, a significant portion of exosomal Wnt4 proved to be displayed on exosomal surfaces. For functional studies, steroid (Dexamethasone or DX)-induced TECs were used as cellular aging models in which DX-triggered cellular aging was efficiently prevented by transgenic exosomes. Finally, DiI lipid-stained exosomes were applied on the mouse thymus sections and also iv-injected into mice, for in vitro binding and in vivo tracking, respectively. We have observed distinct staining patterns using DiI lipid-stained transgenic exosomes on sections of young and aging murine thymus samples. Moreover, in vivo injected DiI lipid-stained transgenic exosomes showed detectable homing to the thymus. Of note, Wnt4-transgenic exosome homing outperformed control (Wnt5a-transgenic) exosome homing. In summary, our findings indicate that exosomal Wnt4 and miR27b can efficiently counteract thymic adipose involution. Although extrapolation of mouse results to the human setting needs caution, our results appoint transgenic TEC exosomes as promising tools of immune rejuvenation and contribute to the characterization of the immune-modulatory effects of extracellular vesicles in the context of regenerative medicine

    Effect of Vipera ammodytes ammodytes Snake Venom on the Human Cytokine Network

    Get PDF
    Local inflammation is a well-known symptom of envenomation by snakes of the family Viperidae, attributed primarily to the phospholipase A2s, metalloproteinases and L-amino acid oxidases contained in their venom. The inflammatory effect of snake venoms has been associated with a marked increase of the cytokines IL-1β, IL-6, IL-8, IL-10 and TNF-α. To determine the impact of Vipera ammodytes ammodytes snake venom on the expression of inflammation-related genes, we incubated human U937 monocyte cells with dilutions of snake venom. Gene expression was quantified for 28 different genes using a TaqMan® Array Human Cytokine Network 96-well Plate in a RT-qPCR system. Our results have demonstrated that 1.0 μg/mL Vipera ammodytes ammodytes venom solution induces a notable change in the expression of several cytokine network genes. Among the upregulated genes, there were several that encode interleukins, interferons, and tumor necrosis factors. We further report the downregulation of three interleukin-related genes. Our findings come as supportive information for the known complex effect of snake venoms on the human cytokine network. It also provides relevant new information regarding the expression of genes that have not been previously associated with the effect of snake venoms

    Physical Activity as a Preventive Lifestyle Intervention Acts Through Specific Exosomal miRNA Species-Evidence From Human Short- and Long-Term Pilot Studies

    Get PDF
    Exercise initiates systemic adaptation to promote health and prevent various lifestyle-related chronic diseases. Emerging evidence suggests that circulating exosomes mediate some of the beneficial effects of exercise via the transfer of microRNAs between tissues. Yet to date, a comprehensive profile of the exosomal miRNA (exomiR) content released following short-term (0.5 year in this study) and long-term (25 + years in this study) regular bouts of exercise is still lacking. However, a better understanding of these miRNA species would assist in clarifying the role of regular exercise at the molecular level in the prevention of chronic diseases. In the present pilot studies we analyzed serum exomiR expression in healthy young, sedentary participants (n = 14; age: 23 ± 2 years) at baseline and following a half year-long moderate-intensity regular exercise training. We also analyzed serum exomiR expression in older, healthy trained participants (seniors, n = 11; age: 62 ± 6 years) who engaged in endurance activities for at least 25 years. Following the isolation and enrichment of serum exosomes using Total Exosome Isolation Reagent (TEI) their exomiR levels were determined using the amplification-free Nanostring platform. Hierarchical cluster analysis revealed that the majority of exomiRs overlap for short-term (0.5 year in this study) and long-term (25 + years in this study) regular bouts of exercise. The top 12 significantly altered exomiRs (let-7a-5p; let-7g-5p; miR-130a-3p; miR-142-3p; miR-150-5p; miR-15a-5p; miR-15b-5p; miR-199a-3p; miR-199b-3p; miR-223-3p; miR-23a-3p, and miR-451a-3p) were used for further evaluation. According to KEGG pathway analysis a large portion of the exomiRs target chronic diseases including cancer, neurodegenerative and metabolic diseases, and viral infections. Our results provide evidence that exosomal miRNA modulation is the molecular mechanism through which regular exercise prevents various chronic diseases. The possibility of using such exomiRs to target diseases is of great interest. While further validation is needed, our comprehensive exomiR study presents, for the first time, the disease-preventive molecular pattern of both short and long-term regular exercise

    Effect of Bitis gabonica and Dendroaspis angusticeps snake venoms on apoptosis-related genes in human thymic epithelial cells

    Get PDF
    Background: Certain environmental toxins permanently damage the thymic epithelium, accelerate immune senescence and trigger secondary immune pathologies. However, the exact underlying cellular mechanisms and pathways of permanent immune intoxication remain unknown. The aim of the present study was to demonstrate gene expressional changes of apoptosis-related cellular pathways in human thymic epithelial cells following exposure to snake venom from Bitis gabonica and Dendroaspis angusticeps. Methods: Snake venoms were characterized by analytical methods including reversed phase high-performance liquid chromatography and sodium dodecyl sulphate-polyacrylamide gel electrophoresis, then applied on human thymic epithelial cells (1889c) for 24 h at 10 μg/mL (as used in previous TaqMan Array study). Gene expressional changes restricted to apoptosis were assayed by TaqMan Array (Human Apoptosis Plate). Results: The most prominent gene expressional changes were shown by CASP5 (≈ 2.5 million-fold, confirmed by dedicated quantitative polymerase chain reaction) and CARD9 (0.016-fold) for B. gabonica, and BIRC7 (6.46-fold) and CASP1 (0.30-fold) for D. angusticeps. Conclusion: The observed apoptotic environment suggests that pyroptosis may be the dominant pathway through which B. gabonica and D. angusticeps snake venoms trigger thymic epithelial apoptosis following envenomation. Keywords: Apoptosis; Apoptosis mediators; Bitis gabonica; Dendroaspis angusticeps; Pyroptosis; RT-qPCR; Snake venoms; Taqman array

    "Beige" Cross Talk Between the Immune System and Metabolism

    Get PDF
    With thymic senescence the epithelial network shrinks to be replaced by adipose tissue. Transcription factor TBX-1 controls thymus organogenesis, however, the same TBX-1 has also been reported to orchestrate beige adipose tissue development. Given these different roles of TBX-1, we have assessed if thymic TBX-1 expression persists and demonstrates this dualism during adulthood. We have also checked whether thymic adipose involution could yield beige adipose tissue. We have used adult mouse and human thymus tissue from various ages to evaluate the kinetics of TBX-1 expression, as well as mouse (TEP1) and human (1889c) thymic epithelial cells (TECs) for our studies. Electron micrographs show multi-locular lipid deposits typical of beige adipose cells. Histology staining shows the accumulation of neutral lipid deposits. qPCR measurements show persistent and/or elevating levels of beige-specific and beige-indicative markers (TBX-1, EAR-2, UCP-1, PPAR-gamma). We have performed miRNome profiling using qPCR-based QuantStudio platform and amplification-free NanoString platform. We have observed characteristic alterations, including increased miR21 level (promoting adipose tissue development) and decreased miR34a level (bias toward beige adipose tissue differentiation). Finally, using the Seahorse metabolic platform we have recorded a metabolic profile (OCR/ECAR ratio) indicative of beige adipose tissue. In summary, our results support that thymic adipose tissue emerging with senescence is bona fide beige adipose tissue. Our data show how the borders blur between a key immune tissue (the thymus) and a key metabolic tissue (beige adipose tissue) with senescence. Our work contributes to the understanding of cross talk between the immune system and metabolism
    corecore