438 research outputs found
Differentiability of fractal curves
While self-similar sets have no tangents at any single point, self-affine
curves can be smooth. We consider plane self-affine curves without double
points and with two pieces. There is an open subset of parameter space for
which the curve is differentiable at all points except for a countable set. For
a parameter set of codimension one, the curve is continuously differentiable.
However, there are no twice differentiable self-affine curves in the plane,
except for parabolic arcs
Boundaries of Disk-like Self-affine Tiles
Let be a disk-like self-affine tile generated by an
integral expanding matrix and a consecutive collinear digit set , and let be the characteristic polynomial of . In the
paper, we identify the boundary with a sofic system by
constructing a neighbor graph and derive equivalent conditions for the pair
to be a number system. Moreover, by using the graph-directed
construction and a device of pseudo-norm , we find the generalized
Hausdorff dimension where
is the spectral radius of certain contact matrix . Especially,
when is a similarity, we obtain the standard Hausdorff dimension where is the largest positive zero of
the cubic polynomial , which is simpler than
the known result.Comment: 26 pages, 11 figure
Curvature-direction measures of self-similar sets
We obtain fractal Lipschitz-Killing curvature-direction measures for a large
class of self-similar sets F in R^d. Such measures jointly describe the
distribution of normal vectors and localize curvature by analogues of the
higher order mean curvatures of differentiable submanifolds. They decouple as
independent products of the unit Hausdorff measure on F and a self-similar
fibre measure on the sphere, which can be computed by an integral formula. The
corresponding local density approach uses an ergodic dynamical system formed by
extending the code space shift by a subgroup of the orthogonal group. We then
give a remarkably simple proof for the resulting measure version under minimal
assumptions.Comment: 17 pages, 2 figures. Update for author's name chang
On the "Mandelbrot set" for a pair of linear maps and complex Bernoulli convolutions
We consider the "Mandelbrot set" for pairs of complex linear maps,
introduced by Barnsley and Harrington in 1985 and studied by Bousch, Bandt and
others. It is defined as the set of parameters in the unit disk such
that the attractor of the IFS is
connected. We show that a non-trivial portion of near the imaginary axis is
contained in the closure of its interior (it is conjectured that all non-real
points of are in the closure of the set of interior points of ). Next we
turn to the attractors themselves and to natural measures
supported on them. These measures are the complex analogs of
much-studied infinite Bernoulli convolutions. Extending the results of Erd\"os
and Garsia, we demonstrate how certain classes of complex algebraic integers
give rise to singular and absolutely continuous measures . Next we
investigate the Hausdorff dimension and measure of , for
in the set , for Lebesgue-a.e. . We also obtain partial results on
the absolute continuity of for a.e. of modulus greater
than .Comment: 22 pages, 5 figure
Congenital acute myeloid leukemia with unique translocation t(11;19)(q23;p13.3)
Congenital leukemia is rarely encountered in clinical practice, even in tertiary children's hospitals. Leukemia may cause significant coagulopathy, putting the patient at risk of intracranial hemorrhage. In this case, the authors present a female infant with a unique mixed phenotypic congenital acute myeloid leukemia showing mixed-lineage leukemia (MLL) rearrangement and severe coagulopathy resulting in a large subdural hematoma. Despite the fatal outcome in this case, neurosurgical treatment of patients with acute myeloid leukemia should be considered if coagulopathy and the clinical scenario allow
Complexity-entropy causality plane: a useful approach for distinguishing songs
Nowadays we are often faced with huge databases resulting from the rapid
growth of data storage technologies. This is particularly true when dealing
with music databases. In this context, it is essential to have techniques and
tools able to discriminate properties from these massive sets. In this work, we
report on a statistical analysis of more than ten thousand songs aiming to
obtain a complexity hierarchy. Our approach is based on the estimation of the
permutation entropy combined with an intensive complexity measure, building up
the complexity-entropy causality plane. The results obtained indicate that this
representation space is very promising to discriminate songs as well as to
allow a relative quantitative comparison among songs. Additionally, we believe
that the here-reported method may be applied in practical situations since it
is simple, robust and has a fast numerical implementation.Comment: Accepted for publication in Physica
Mixing Bandt-Pompe and Lempel-Ziv approaches: another way to analyze the complexity of continuous-states sequences
In this paper, we propose to mix the approach underlying Bandt-Pompe
permutation entropy with Lempel-Ziv complexity, to design what we call
Lempel-Ziv permutation complexity. The principle consists of two steps: (i)
transformation of a continuous-state series that is intrinsically multivariate
or arises from embedding into a sequence of permutation vectors, where the
components are the positions of the components of the initial vector when
re-arranged; (ii) performing the Lempel-Ziv complexity for this series of
`symbols', as part of a discrete finite-size alphabet. On the one hand, the
permutation entropy of Bandt-Pompe aims at the study of the entropy of such a
sequence; i.e., the entropy of patterns in a sequence (e.g., local increases or
decreases). On the other hand, the Lempel-Ziv complexity of a discrete-state
sequence aims at the study of the temporal organization of the symbols (i.e.,
the rate of compressibility of the sequence). Thus, the Lempel-Ziv permutation
complexity aims to take advantage of both of these methods. The potential from
such a combined approach - of a permutation procedure and a complexity analysis
- is evaluated through the illustration of some simulated data and some real
data. In both cases, we compare the individual approaches and the combined
approach.Comment: 30 pages, 4 figure
Complexity of multi-dimensional spontaneous EEG decreases during propofol induced general anaesthesia
Emerging neural theories of consciousness suggest a correlation between a specific type of neural dynamical complexity and the level of consciousness: When awake and aware, causal interactions between brain regions are both integrated (all regions are to a certain extent connected) and differentiated (there is inhomogeneity and variety in the interactions). In support of this, recent work by Casali et al (2013) has shown that Lempel-Ziv complexity correlates strongly with conscious level, when computed on the EEG response to transcranial magnetic stimulation. Here we investigated complexity of spontaneous high-density EEG data during propofol-induced general anaesthesia. We consider three distinct measures: (i) Lempel-Ziv complexity, which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability in the constitution of the set of active channels; and (iii) the novel synchrony coalition entropy (SCE), which measures the variability in the constitution of the set of synchronous channels. After some simulations on Kuramoto oscillator models which demonstrate that these measures capture distinct ‘flavours’ of complexity, we show that there is a robustly measurable decrease in the complexity of spontaneous EEG during general anaesthesia
Physics and Applications of Laser Diode Chaos
An overview of chaos in laser diodes is provided which surveys experimental
achievements in the area and explains the theory behind the phenomenon. The
fundamental physics underpinning this behaviour and also the opportunities for
harnessing laser diode chaos for potential applications are discussed. The
availability and ease of operation of laser diodes, in a wide range of
configurations, make them a convenient test-bed for exploring basic aspects of
nonlinear and chaotic dynamics. It also makes them attractive for practical
tasks, such as chaos-based secure communications and random number generation.
Avenues for future research and development of chaotic laser diodes are also
identified.Comment: Published in Nature Photonic
- …