80 research outputs found

    Toward a Decision Support System for Mitigating Urban Heat

    Get PDF
    With the continuous rise of global urbanization, city planners and policymakers are increasingly concerned with urban heat islands (UHI), which are metropolitan areas that are significantly warmer than their surrounding rural areas. We address the United Nation’s Sustainable Development Goal 11 “Sustainable Cities and Communities,” and we design and develop a decision support system (DSS), which will help city planners and policymakers to overcome economic barriers to reach environmental sustainability goals

    A Minimal Fragment of MUC1 Mediates Growth of Cancer Cells

    Get PDF
    The MUC1 protein is aberrantly expressed on many solid tumor cancers. In contrast to its apical clustering on healthy epithelial cells, it is uniformly distributed over cancer cells. However, a mechanistic link between aberrant expression and cancer has remained elusive. Herein, we report that a membrane-bound MUC1 cleavage product, that we call MUC1*, is the predominant form of the protein on cultured cancer cells and on cancerous tissues. Further, we demonstrate that transfection of a minimal fragment of MUC1, MUC1*1110, containing a mere forty-five (45) amino acids of the extracellular domain, is sufficient to confer the oncogenic activities that were previously attributed to the full-length protein. By comparison of molecular weight and function, it appears that MUC1* and MUC1*1110 are approximately equivalent. Evidence is presented that strongly supports a mechanism whereby dimerization of the extracellular domain of MUC1* activates the MAP kinase signaling cascade and stimulates cell growth. These findings suggest methods to manipulate this growth mechanism for therapeutic interventions in cancer treatments

    Mind the gap: A comparison of socio-technical limitations of national house rating systems in the UK and Australia

    Get PDF
    This paper reviews the national house rating tools in the UK and Australia, evaluates the energy performance of eight different case study houses, and quantifies the magnitude of the performance gap between as-designed energy performance and as-occupied (actual) energy use. To identify contributing factors to the performance gap, post-occupancy evaluations were conducted, and all case study houses were monitored over two years. It was observed that there are performance gaps in all case study houses, however, the gap can be negative (i.e. more actual energy use than simulated) or positive (i.e. less actual energy use than simulated). Results show that the actual heating loads were less than simulated in 5 of the 8 houses (2 UK and 3 AU), and only 1 house (AU) had an actual cooling load more than simulated. The heating discrepancies ranged from 73% to 180% for the UK houses, and 19%–172% for the AU houses. For the cooling loads, actual energy use in the AU house was up to 4.8 times higher than the simulated. To understand the underlying causes, several influencing factors (including internal temperature conditions, climate, house form and urban context, construction quality, and processes and assumptions of national house rating tools) were analysed. It was found that a key challenge relates to a limited definition of the energy system (household energy use), focusing on technical issues and largely ignoring or simplifying existing and changing socio-cultural issues. Additionally, the paper argues for the need for extending the system boundary beyond individual buildings to neighbourhood, community and city scales. At both a building scale and community scale, deeper understandings of socio-cultural issues that impact on, and are impacted by, energy metabolism, are required

    The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: an overview of Network organization, procedures and interventions

    Get PDF
    Asthma is a heterogeneous disease, with multiple underlying inflammatory pathways and structural airway abnormalities that impact disease persistence and severity. Recent progress has been made in developing targeted asthma therapeutics, especially for subjects with eosinophilic asthma. However, there is an unmet need for new approaches to treat patients with severe and exacerbation prone asthma, who contribute disproportionately to disease burden. Extensive deep phenotyping has revealed the heterogeneous nature of severe asthma and identified distinct disease subtypes. A current challenge in the field is to translate new and emerging knowledge about different pathobiologic mechanisms in asthma into patient-specific therapies, with the ultimate goal of modifying the natural history of disease. Here we describe the Precision Interventions for Severe and/or Exacerbation Prone Asthma (PrecISE) Network, a groundbreaking collaborative effort of asthma researchers and biostatisticians from around the U.S. The PrecISE Network was designed to conduct phase II/proof of concept clinical trials of precision interventions in the severe asthma population, and is supported by the National Heart Lung and Blood Institute of the National Institutes of Health. Using an innovative adaptive platform trial design, the Network will evaluate up to six interventions simultaneously in biomarker-defined subgroups of subjects. We review the development and organizational structure of the Network, and choice of interventions being studied. We hope that the PrecISE Network will enhance our understanding of asthma subtypes and accelerate the development of therapeutics for of severe asthma

    A DNA self-assembled monolayer for the specific attachment of unmodified double- or single-stranded DNA.

    Get PDF
    A novel method for DNA surface immobilization and a paradigm for the attachment of unmodified DNA of any length or sequence are described herein. The development of a DNA self-assembled monolayer (DNA-SAM) that incorporates a DNA-thiol into a monolayer of inert alkane thiolates is reported. This DNA-SAM specifically hybridized complementary oligonucleotides while resisting the nonspecific adsorption of noncomplementary DNA and irrelevant proteins. Duplex DNA, having a single-stranded "capture tail," specifically bound to the DNA-SAM if the sequence of the "tail" was complementary to DNA presented in the SAM. The sense strand of the hybridized duplex DNA could be covalently attached to the surface by an enzymatic ligation reaction (leaving the anti-sense strand dissociable). DNA-binding proteins specifically bound to these surfaces only if their cognate sites were present in the duplex DNA

    The use of variable density self-assembled monolayers to probe the structure of a target molecule.

    Get PDF
    VP16, a protein encoded by herpes simplex virus, has a well-characterized 78 amino acid acidic activation domain. When tethered to DNA, tandem repeats of an eight amino acid motif taken from this region stimulate the transcription of a nearby gene. This work addresses how these minimal activation motifs interact with a putative target, the general transcription factor TATA box binding protein (TBP), and the biological relevance of this mechanism of action. I developed novel biophysical techniques to discriminate among three possible mechanistic models that describe how reiterated peptide motifs could synergistically effect transcription: 1) the peptide motifs simultaneously bind to quasi-identical sites on TBP, producing a high-affinity bivalent interaction that holds the general transcription factor near the start site of transcription; 2) the binding of one recognition motif causes an allosteric effect that enhances the subsequent binding of additional peptide motifs; or 3) a high-affinity interaction between the peptide repeats and TBP does occur, but rather than being the result of a "bivalent" interaction, it results from the summation of multiple interactions between the target protein and the entire length of the peptide. I generated self-assembled monolayers (SAMs) that presented different densities of the activation motif peptide in a two-dimensional array to test for avidity effects. Surface plasmon resonance (SPR) was used to measure the amount of target (TBP) binding as a function of the peptide density; a marked increase in avidity above a characteristic, critical peptide surface density was found. Competitive inhibition experiments were performed to compare the avidity of peptide motifs, tandemly repeated two or four times, and single motifs separated by a flexible linker. Four iterations of the motif, preincubated with TBP, inhibited its binding to high-density peptide surfaces approximately 250-fold better than two iterations. Single peptide motifs joined by a flexible amino acid linker inhibited TBP binding to surface peptide nearly as well as four tandem repeats. The results favor mechanistic model 1: reiterated activation motifs interact with TBP through a high-affinity interaction that is the result of the cooperative effect of single motifs simultaneously binding to separate sites on TBP. This finding is consistent with the idea that DNA-bound activation domains trigger the transcription of a nearby gene by tethering the general transcription factor, TBP, near the start site of transcription

    Localization of muscarinic acetylcholine receptor 2 to the intestinal crypt stem cell compartment

    No full text
    The data presented in this article are related to the research article entitled “Distribution of muscarinic acetylcholine receptor subtypes in the murine small intestine” (E.D. Muise, N. Gandotra, J.J. Tackett, M.C. Bamdad, R.A. Cowles, 2016) [1]. We recently demonstrated that neuronal serotonin stimulates intestinal crypt cell division, and induces villus growth and crypt depth (E.R. Gross, M.D. Gershon, K.G. Margolis, Z.V. Gertsberg, Z. Li, R.A. Cowles, 2012; M.D. Gershon, 2013) [2,3]. Scopolamine, a nonspecific muscarinic receptor antagonist, inhibited serotonin-induced intestinal mucosal growth [2]. Here we provide data regarding the localization of muscarinic acetylcholine receptor 2 to the intestinal crypt stem cell compartment
    • …
    corecore