15 research outputs found

    Can Mg isotopes be used to trace cyanobacteria-mediated magnesium carbonate precipitation in alkaline lakes?

    Get PDF
    The fractionation of Mg isotopes was determined during the cyanobacterial mediated precipitation of hydrous magnesium carbonate precipitation in both natural environments and in the laboratory. Natural samples were obtained from Lake Salda (SE Turkey), one of the few modern environments on the Earth's surface where hydrous Mg-carbonates are the dominant precipitating minerals. This precipitation was associated with cyanobacterial stromatolites which were abundant in this aquatic ecosystem. Mg isotope analyses were performed on samples of incoming streams, groundwaters, lake waters, stromatolites, and hydromagnesite-rich sediments. Laboratory Mg carbonate precipitation experiments were conducted in the presence of purified Synechococcus sp cyanobacteria that were isolated from the lake water and stromatolites. The hydrous magnesium carbonates nesquehonite (MgCO3·3H2O) and dypingite (Mg5(CO3)4(OH)25(H2O)) were precipitated in these batch reactor experiments from aqueous solutions containing either synthetic NaHCO3/MgCl2 mixtures or natural Lake Salda water, in the presence and absence of live photosynthesizing Synechococcus sp. Bulk precipitation rates were not to affected by the presence of bacteria when air was bubbled through the system. In the stirred non-bubbled reactors, conditions similar to natural settings, bacterial photosynthesis provoked nesquehonite precipitation, whilst no precipitation occurred in bacteria-free systems in the absence of air bubbling, despite the fluids achieving a similar or higher degree of supersaturation. The extent of Mg isotope fractionation (?26Mgsolid-solution) between the mineral and solution in the abiotic experiments was found to be identical, within uncertainty, to that measured in cyanobacteria-bearing experiments, and ranges from ?1.4 to ?0.7 ‰. This similarity refutes the use of Mg isotopes to validate microbial mediated precipitation of hydrous Mg carbonate

    Zeta potential of anoxygenic phototrophic bacteria and Ca adsorption at the cell surface: possible implications for cell protection from CaCO3 precipitation in alkaline solutions.

    No full text
    10 pagesInternational audienceElectrophoretic mobility measurements and surface adsorption of Ca on living, inactivated, and heat-killed haloalkaliphilic Rhodovulum steppense, A-20s, and halophilic Rhodovulum sp., S-17-65 anoxygenic phototrophic bacteria (APB) cell surfaces were performed to determine the degree to which these bacteria metabolically control their surface potential equilibria. Zeta potential of both species was measured as a function of pH and ionic strength, calcium and bicarbonate concentrations. For both live APB in 0.1M NaCl, the zeta potential is close to zero at pH from 2.5 to 3 and decreases to -30 to -40 mV at pH of 5-8. In alkaline solutions, there is an unusual increase of zeta potential with a maximum value of -10 to -20 mV at a pH of 9-10.5. This increase of zeta potential in alkaline solutions is reduced by the presence of NaHCO(3) (up to 10 mM) and only slightly affected by the addition of equivalent amount of Ca. At the same time, for inactivated (exposure to NaN(3), a metabolic inhibitor) and heat-killed bacteria cells, the zeta potential was found to be stable (-30 to -60 mV, depending upon the ionic strength) between pH 5 and 11 without any increase in alkaline solutions. Adsorption of Ca ions on A-20s cells surface was more significant than that on S-17-65 cells and started at more acidic pHs, consistent with zeta potential measurements in the presence of 0.001-0.01 mol/L CaCl(2). Overall, these results indicate that APB can metabolically control their surface potential to electrostatically attract nutrients at alkaline pH, while rejecting/avoiding Ca ions to prevent CaCO(3) precipitation in the vicinity of cell surface and thus, cell incrustation

    Post-mitotic dynamics of pre-nucleolar bodies is driven by pre-rRNA processing

    No full text
    International audienc

    Calcium carbonate precipitation by anoxygenic phototrophic bacteria.

    No full text
    16 pagesInternational audienceCarbonate biomineralization is considered as one of the main natural processes controlling CO2 levels in the atmosphere both in the past and at present time. In contrast to extensive studies of cyanobacterial calcification, biomineralization of anoxygenic phototrophic bacteria (APB) remained largely underestimated, despite their potentially important role on CaCO3 precipitation in the biomats, notably in the past. Haloalcaliphilic Rhodovulum steppense A-20s and halophilic neutrophilic Rhodovulum sp. S-17-65 were examined with respect to their ability to precipitate CaCO3 under controlled laboratory conditions. To characterize the link between the rate of bacterial growth (biomass production) and the rate of CaCO3 precipitation, batch kinetic experiments with live, dead and inactivated bacteria both in nutrient solution and in inert electrolyte were performed and produced precipitates were examined by SEM, TEM and XRD techniques. Active strains A-20s and S-17-65 precipitated calcite from initially supersaturated solutions (Ωcalcite = 10 to 40) via increasing Ωcalcite to 80–120 before the precipitation. The amount of precipitated CaCO3 (mole) was directly correlated with the amount of organic C in bacterial biomass produced with a slope of dependence ranging from 0.3 to 0.6 and from 0.1 to 0.3 for A-20s and S-17-65, respectively, depending on the initial solution composition. For both bacterial strains, only live actively photosynthetizing bacteria were capable of effectively decreasing Ca concentration and form CaCO3 with apparent bulk precipitation rates ranging from 0.001 to 0.0150 mmol/h at 10–20 gwet/L of biomass, similar to rates reported for other bacteria. SEM and XRD analyses of precipitates reveal the dominance of calcite with some amount of vaterite and monohydrocalcite forming spheres up to 100 μm diameter. The TEM analysis of bacterial suspension at the end of precipitation experiments did not demonstrate the presence of CaCO3 at the surface or in the vicinity of live cells. This suggests the existence of certain cell protection mechanism against carbonate precipitation at the cell surface. Given the lower efficiency of photoheterotrophic APB, compared to photoautotrophic cyanobacteria, to precipitate CaCO3 in natural conditions, it is possible that the overall potential of phototrophic community to form massive carbonate deposits was strongly limited before the appearance of oxygenic phototrophs

    Experimental modeling of calcium carbonate precipitation by cyanobacterium Gloeocapsa sp.

    No full text
    17 pagesInternational audienceThe impact of cyanobacteria Gloeocapsa sp. on calcium carbonate precipitation has been examined by combining physico-chemical macroscopic and in-situ microscopic techniques. For this, Ca adsorption and assimilation and kinetic experiments were used to assess the existence of the metabolic process responsible for CaCO3 mineralization by Gloeocapsa sp. Experimental products were characterized by Scanning and Transmission Electron Microscopy (SEM and TEM) imaging, XRD analyses, coupled with Confocal Laser Scanning Microscopy (CLSM) and Raman micro-spectroscopy. Ca carbonate precipitation experiments were performed at an initial pH of 7.8 to 9.4 and 25 °C in supersaturated solutions (Ωcalcite = 1.5 to 150) in the presence of active cyanobacterial cells. During cyanobacterial photosynthesis, the solution pH increased up to 9.5-10.8 after the first 5-10 days of growth, the Ca concentration decreased and the supersaturation index attained a maximum followed by a gradual decrease due to progressive CaCO3 precipitation. Ca adsorption at the surface of live and inactivated Gloeocapsa sp. cells and Ca intracellular assimilation during cell growth were measured as a function of pH and Ca concentration in solution. The contribution of surface adsorption and intracellular uptake to total Ca removal from solution due to biocalcification does not exceed 10%. The presence of calcium carbonate, identified as calcite using Raman spectroscopy, on active Gloeocapsa sp. surfaces and in the vicinity of bacterial cell surfaces was evidenced using SEM. TEM and CLSM demonstrated cyanobacterial cell encrustation by CaCO3 precipitated in the form of nano-spheres adjacent to the cell surface. In contrast to other previously investigated calcifying bacteria, no cellular protection mechanism against Ca2 + adsorption and subsequent carbonate precipitation has been demonstrated for Gloeocapsa sp. This is most likely linked to the specific cellular organization of this species, which involves several cells in one single capsule. As such, planktonic cultures of Gloeocapsa sp. exhibit significant calcifying potential, making them important CO2-fixing microorganisms for both paleo-environmental reconstructions and technological applications

    Elasticity of podosome actin networks produces nanonewton protrusive forces

    No full text
    Actin filaments generate force in diverse contexts, although how they can produce nanonewtons of force is unclear. Here, the authors apply cryo-electron tomography, quantitative analysis, and modelling to reveal the podosome core is a dense, spring-loaded, actin network storing elastic energy. Actin filaments assemble into force-generating systems involved in diverse cellular functions, including cell motility, adhesion, contractility and division. It remains unclear how networks of actin filaments, which individually generate piconewton forces, can produce forces reaching tens of nanonewtons. Here we use in situ cryo-electron tomography to unveil how the nanoscale architecture of macrophage podosomes enables basal membrane protrusion. We show that the sum of the actin polymerization forces at the membrane is not sufficient to explain podosome protrusive forces. Quantitative analysis of podosome organization demonstrates that the core is composed of a dense network of bent actin filaments storing elastic energy. Theoretical modelling of the network as a spring-loaded elastic material reveals that it exerts forces of a few tens of nanonewtons, in a range similar to that evaluated experimentally. Thus, taking into account not only the interface with the membrane but also the bulk of the network, is crucial to understand force generation by actin machineries. Our integrative approach sheds light on the elastic behavior of dense actin networks and opens new avenues to understand force production inside cells

    Design, synthesis, and characterization of protein origami based on self-assembly of a brick and staple artificial protein pair

    No full text
    International audienceA versatile strategy to create an inducible protein assembly with predefined geometry is demonstrated. The assembly is triggered by a binding protein that staples two identical protein bricks together in a predictable spatial conformation. The brick and staple proteins are designed for mutual directional affinity and engineered by directed evolution from a synthetic modular repeat protein library. As a proof of concept, this article reports on the spontaneous, extremely fast and quantitative self-assembly of two designed alpha-repeat (αRep) brick and staple proteins into macroscopic tubular superhelices at room temperature. Small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM with staining agent and cryoTEM) elucidate the resulting superhelical arrangement that precisely matches the a priori intended 3D assembly. The highly ordered, macroscopic biomolecular construction sustains temperatures as high as 75 °C thanks to the robust αRep building blocks. Since the α-helices of the brick and staple proteins are highly programmable, their design allows encoding the geometry and chemical surfaces of the final supramolecular protein architecture. This work opens routes toward the design and fabrication of multiscale protein origami with arbitrarily programmed shapes and chemical functions
    corecore