73 research outputs found

    Crop expansion and conservation priorities in tropical countries

    Get PDF
    Expansion of cropland in tropical countries is one of the principal causes of biodiversity loss, and threatens to undermine progress towards meeting the Aichi Biodiversity Targets. To understand this threat better, we analysed data on crop distribution and expansion in 128 tropical countries, assessed changes in area of the main crops and mapped overlaps between conservation priorities and cultivation potential. Rice was the single crop grown over the largest area, especially in tropical forest biomes. Cropland in tropical countries expanded by c. 48,000 km2 per year from 1999–2008. The countries which added the greatest area of new cropland were Nigeria, Indonesia, Ethiopia, Sudan and Brazil. Soybeans and maize are the crops which expanded most in absolute area. Other crops with large increases included rice, sorghum, oil palm, beans, sugar cane, cow peas, wheat and cassava. Areas of high cultivation potential—while bearing in mind that political and socio-economic conditions can be as influential as biophysical ones—may be vulnerable to conversion in the future. These include some priority areas for biodiversity conservation in tropical countries (e.g., Frontier Forests and High Biodiversity Wilderness Areas), which have previously been identified as having ‘low vulnerability’, in particular in central Africa and northern Australia. There are also many other smaller areas which are important for biodiversity and which have high cultivation potential (e.g., in the fringes of the Amazon basin, in the Paraguayan Chaco, and in the savanna woodlands of the Sahel and East Africa). We highlight the urgent need for more effective sustainability standards and policies addressing both production and consumption of tropical commodities, including robust land-use planning in agricultural frontiers, establishment of new protected areas or REDD+ projects in places agriculture has not yet reached, and reduction or elimination of incentives for land-demanding bioenergy feedstock

    Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity.

    Get PDF
    Consumption of globally traded agricultural commodities like soy and palm oil is one of the primary causes of deforestation and biodiversity loss in some of the world's most species-rich ecosystems. However, the complexity of global supply chains has confounded efforts to reduce impacts. Companies and governments with sustainability commitments struggle to understand their own sourcing patterns, while the activities of more unscrupulous actors are conveniently masked by the opacity of global trade. We combine state-of-the-art material flow, economic trade, and biodiversity impact models to produce an innovative approach for understanding the impacts of trade on biodiversity loss and the roles of remote markets and actors. We do this for the production of soy in the Brazilian Cerrado, home to more than 5% of the world´s species. Distinct sourcing patterns of consumer countries and trading companies result in substantially different impacts on endemic species. Connections between individual buyers and specific hot spots explain the disproportionate impacts of some actors on endemic species and individual threatened species, such as the particular impact of European Union consumers on the recent habitat losses for the iconic giant anteater (Myrmecophaga tridactyla). In making these linkages explicit, our approach enables commodity buyers and investors to target their efforts much more closely to improve the sustainability of their supply chains in their sourcing regions while also transforming our ability to monitor the impact of such commitments over time.UK Global Food Security programme (Project 304 BB/N02060X/1

    Shortfalls and Solutions for Meeting National and Global Conservation Area Targets

    Get PDF
    Governments have committed to conserving greater than or equal to 17% of terrestrial and greater than or equal to 10% of marine environments globally, especially areas of particular importance for biodiversity through ecologically representative Protected Area (PA) systems or other area-based conservation measures , while individual countries have committed to conserve 3-50% of their land area. We estimate that PAs currently cover 14.6% of terrestrial and 2.8% of marine extent, but 59-68% of ecoregions, 77-78% of important sites for biodiversity, and 57% of 25,380 species have inadequate coverage. The existing 19.7 million km super(2) terrestrial PA network needs only 3.3 million km super(2) to be added to achieve 17% terrestrial coverage. However, it would require nearly doubling to achieve, cost-efficiently, coverage targets for all countries, ecoregions, important sites, and species. Poorer countries have the largest relative shortfalls. Such extensive and rapid expansion of formal PAs is unlikely to be achievable. Greater focus is therefore needed on alternative approaches, including community- and privately managed sites and other effective area-based conservation measures

    An Investigation into the Determining Factors of Zoo Visitor Attendances in UK Zoos

    Get PDF
    The debate as to which animals are most beneficial to keep in zoos in terms of financial and conservative value is readily disputed; however, demographic factors have also been shown to relate to visitor numbers on an international level. The main aims of this research were: (1) To observe the distribution and location of zoos across the UK, (2) to develop a way of calculating zoo popularity in terms of the species kept within a collection and (3) to investigate the factors related to visitor numbers regarding admission costs, popularity of the collection in terms of the species kept and local demographic factors. Zoo visitor numbers were positively correlated with generated popularity ratings for zoos based on the species kept within a collection and admission prices (Pearson correlation: n = 34, r = 0.268, P = 0.126 and n = 34, r = −0.430, P = 0.011). Animal collections are aggregated around large cities and tourist regions, particularly coastal areas. No relationship between demographic variables and visitor numbers was found (Pearson correlation: n = 34, r = 0.268, P = 0.126), which suggests that the popularity of a zoo's collection relative to the types and numbers of species kept is more indicative of a collection's visitor numbers than its surrounding demographic figures. Zoos should incorporate generating high popularity scores as part of their collection planning strategies, to ensure that they thrive in the future, not only as tourist attractions but also as major conservation organizations

    TESSA: A toolkit for rapid assessment of ecosystem services at sites of biodiversity conservation importance

    Get PDF
    Sites that are important for biodiversity conservation can also provide significant benefits (i.e. ecosystem services) to people. Decision-makers need to know how change to a site, whether development or restoration, would affect the delivery of services and the distribution of any benefits among stakeholders. However, there are relatively few empirical studies that present this information. One reason is the lack of appropriate methods and tools for ecosystem service assessment that do not require substantial resources or specialist technical knowledge, or rely heavily upon existing data. Here we address this gap by describing the Toolkit for Ecosystem Service Site-based Assessment (TESSA). It guides local non-specialists through a selection of relatively accessible methods for identifying which ecosystem services may be important at a site, and for evaluating the magnitude of benefits that people obtain from them currently, compared with those expected under alternative land-uses. The toolkit recommends use of existing data where appropriate and places emphasis on enabling users to collect new field data at relatively low cost and effort. By using TESSA, the users could also gain valuable information about the alternative land-uses; and data collected in the field could be incorporated into regular monitoring programmes

    Projected Impacts of Climate and Land-Use Change on the Global Diversity of Birds

    Get PDF
    Over the past few decades, land-use and climate change have led to substantial range contractions and species extinctions. Even more dramatic changes to global land cover are projected for this century. We used the Millennium Ecosystem Assessment scenarios to evaluate the exposure of all 8,750 land bird species to projected land-cover changes due to climate and land-use change. For this first baseline assessment, we assumed stationary geographic ranges that may overestimate actual losses in geographic range. Even under environmentally benign scenarios, at least 400 species are projected to suffer >50% range reductions by the year 2050 (over 900 by the year 2100). Although expected climate change effects at high latitudes are significant, species most at risk are predominantly narrow-ranged and endemic to the tropics, where projected range contractions are driven by anthropogenic land conversions. Most of these species are currently not recognized as imperiled. The causes, magnitude and geographic patterns of potential range loss vary across socioeconomic scenarios, but all scenarios (even the most environmentally benign ones) result in large declines of many species. Whereas climate change will severely affect biodiversity, in the near future, land-use change in tropical countries may lead to yet greater species loss. A vastly expanded reserve network in the tropics, coupled with more ambitious goals to reduce climate change, will be needed to minimize global extinctions

    Sparing old-growth maximises conservation outcomes within selectively logged Amazonian rainforest

    Get PDF
    Timber extraction threatens a vast area of tropical ecosystems, making it vital to design productive harvesting operations that limit biodiversity declines. Contrasting management options span a continuum from less-intensive, land-sharing logging applied over a larger area to land-sparing operations that combine intensive harvesting with the preservation of old-growth forest. Combining company-reported extraction rates with dung beetle surveys along an Amazonian logging gradient, we explore how individual species' abundances, geometric mean population sizes, functional diversity, and trait characteristics vary across simulated logging concessions and production targets. We substantially extend previous studies by evaluating 8000 mixed-harvesting scenarios and by assessing the profitability of contrasting practices. Simply maximising old-growth protection delivers the highest species' abundances and population sizes for species negatively affected by logging. Maximising old-growth also supports communities with a functional trait dissimilarity (FDis, RaoQ) and functional structure of nesting guilds, biomass, pronotum volume, front leg area, and front:back leg ratio traits that closely resembles old-growth forest. Functional evenness (FEve), richness (FRic), and divergence (FDiv) did not vary across logging strategies. Some 3 % of mixed approaches outperform extreme sparing (which maximises old-growth retention through intensive logging) but still involve substantial sparing, enabled by intensified logging elsewhere. However more-extensive business-as-usual harvesting is up to 90 % more profitable than extreme sparing, suggesting active policy mechanisms, standards, or regulations would be needed to make spatially-concentrated logging operations (which benefit biodiversity) more commercially attractive. Old-growth sparing appears key to limiting biodiversity declines within tropical timber concessions, but would require payments to compensate for reduced profits

    Worldwide insect declines: An important message, but interpret with caution.

    Get PDF
    A recent paper claiming evidence of global insect declines achieved huge media attention, including claims of "insectaggedon" and a "collapse of nature." Here, we argue that while many insects are declining in many places around the world, the study has important limitations that should be highlighted. We emphasise the robust evidence of large and rapid insect declines present in the literature, while also highlighting the limitations of the original study
    corecore