1,580 research outputs found

    Emission Line Variability of the Accreting Young Brown Dwarf 2MASSW J1207334-393254: From Hours to Years

    Full text link
    We have obtained a series of high-resolution optical spectra for the brown dwarf 2MASSW J1207334-393254 (2M1207) using the ESO Very Large Telescope with the UVES spectrograph during two consecutive observing nights (time resolution of ~12 min) and the Magellan Clay telescope with the MIKE spectrograph. Combined with previously published results, these data allow us to investigate changes in the emission line spectrum of 2M1207 on timescales of hours to years. Most of the emission line profiles of 2M1207 are broad, in particular that of Halpha, indicating that the dominant fraction of the emission must be attributed to disk accretion rather than to magnetic activity. From the Halpha 10% width we deduce a relatively stable accretion rate between 10^(-10.1...-9.8) Msun/yr for two nights of consecutive observations. Therefore, either the accretion stream is nearly homogeneous over (sub-)stellar longitude or the system is seen face-on. Small but significant variations are evident throughout our near-continuous observation, and they reach a maximum after ~8 h, roughly the timescale on which maximum variability is expected across the rotation cycle. Together with past measurements, we confirm that the accretion rate of 2M1207 varies by more than one order of magnitude on timescales of months to years. Such variable mass accretion yields a plausible explanation for the observed spread in the accretion rate vs. mass diagram. The magnetic field required to drive the funnel flow is on the order of a few hundred G. Despite the obvious presence of a magnetic field, no radio nor X-ray emission has been reported for 2M1207. Possibly strong accretion suppresses magnetic activity in brown dwarfs, similar to the findings for higher mass T Tauri stars.Comment: accepted for publication in Ap

    Maximal subgroups and PST-groups

    Get PDF
    A subgroup H of a group G is said to permute with a subgroup K of G if HK is a subgroup of G. H is said to be permutable (resp. S-permutable) if it permutes with all the subgroups (resp. Sylow subgroups) of G. Finite groups in which permutability (resp. S-permutability) is a transitive relation are called PT-groups (resp. PST-groups). PT-, PST- and T-groups, or groups in which normality is transitive, have been extensively studied and characterised. Kaplan [Kaplan G., On T-groups, supersolvable groups, and maximal subgroups, Arch. Math. (Basel), 2011, 96(1), 19-25] presented some new characterisations of soluble T-groups. The main goal of this paper is to establish PT- and PST-versiosn of Kaplan's results, which enables a better understanding of the relationships between these classes

    Prefactorized subgroups in pairwise mutually permutable products

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10231-012-0257-yWe continue here our study of pairwise mutually and pairwise totally permutable products. We are looking for subgroups of the product in which the given factorization induces a factorization of the subgroup. In the case of soluble groups, it is shown that a prefactorized Carter subgroup and a prefactorized system normalizer exist.Aless stringent property have F-residual, F-projector and F-normalizer for any saturated formation F including the supersoluble groups.The first and fourth authors have been supported by the grant MTM2010-19938-C03-01 from MICINN (Spain).Ballester-Bolinches, A.; Beidleman, J.; Heineken, H.; Pedraza Aguilera, MC. (2013). Prefactorized subgroups in pairwise mutually permutable products. Annali di Matematica Pura ed Applicata. 192(6):1043-1057. https://doi.org/10.1007/s10231-012-0257-yS104310571926Amberg B., Franciosi S., de Giovanni F.: Products of Groups. Clarendon Press, Oxford (1992)Ballester-Bolinches, A., Pedraza-Aguilera, M.C., Pérez-Ramos, M.D.: Totally and Mutually Permutable Products of Finite Groups, Groups St. Andrews 1997 in Bath I. London Math. Soc. Lecture Note Ser. 260, 65–68. Cambridge University Press, Cambridge (1999)Ballester-Bolinches A., Pedraza-Aguilera M.C., Pérez-Ramos M.D.: On finite products of totally permutable groups. Bull. Aust. Math. Soc. 53, 441–445 (1996)Ballester-Bolinches A., Pedraza-Aguilera M.C., Pérez-Ramos M.D.: Finite groups which are products of pairwise totally permutable subgroups. Proc. Edinb. Math. Soc. 41, 567–572 (1998)Ballester-Bolinches A., Beidleman J.C., Heineken H., Pedraza-Aguilera M.C.: On pairwise mutually permutable products. Forum Math. 21, 1081–1090 (2009)Ballester-Bolinches A., Beidleman J.C., Heineken H., Pedraza-Aguilera M.C.: Local classes and pairwise mutually permutable products of finite groups. Documenta Math. 15, 255–265 (2010)Beidleman J.C., Heineken H.: Mutually permutable subgroups and group classes. Arch. Math. 85, 18–30 (2005)Beidleman J.C., Heineken H.: Group classes and mutually permutable products. J. Algebra 297, 409–416 (2006)Carocca A.: p-supersolvability of factorized groups. Hokkaido Math. J. 21, 395–403 (1992)Carocca, A., Maier, R.: Theorems of Kegel-Wielandt Type Groups St. Andrews 1997 in Bath I. London Math. Soc. Lecture Note Ser. 260, 195–201. Cambridge University Press, Cambridge, (1999)Doerk K., Hawkes T.: Finite Soluble Groups. Walter De Gruyter, Berlin (1992)Maier R., Schmid P.: The embedding of quasinormal subgroups in finite groups. Math. Z. 131, 269–272 (1973

    Can we identify non-stationary dynamics of trial-to-trial variability?"

    Get PDF
    Identifying sources of the apparent variability in non-stationary scenarios is a fundamental problem in many biological data analysis settings. For instance, neurophysiological responses to the same task often vary from each repetition of the same experiment (trial) to the next. The origin and functional role of this observed variability is one of the fundamental questions in neuroscience. The nature of such trial-to-trial dynamics however remains largely elusive to current data analysis approaches. A range of strategies have been proposed in modalities such as electro-encephalography but gaining a fundamental insight into latent sources of trial-to-trial variability in neural recordings is still a major challenge. In this paper, we present a proof-of-concept study to the analysis of trial-to-trial variability dynamics founded on non-autonomous dynamical systems. At this initial stage, we evaluate the capacity of a simple statistic based on the behaviour of trajectories in classification settings, the trajectory coherence, in order to identify trial-to-trial dynamics. First, we derive the conditions leading to observable changes in datasets generated by a compact dynamical system (the Duffing equation). This canonical system plays the role of a ubiquitous model of non-stationary supervised classification problems. Second, we estimate the coherence of class-trajectories in empirically reconstructed space of system states. We show how this analysis can discern variations attributable to non-autonomous deterministic processes from stochastic fluctuations. The analyses are benchmarked using simulated and two different real datasets which have been shown to exhibit attractor dynamics. As an illustrative example, we focused on the analysis of the rat's frontal cortex ensemble dynamics during a decision-making task. Results suggest that, in line with recent hypotheses, rather than internal noise, it is the deterministic trend which most likely underlies the observed trial-to-trial variability. Thus, the empirical tool developed within this study potentially allows us to infer the source of variability in in-vivo neural recordings

    On a graph related to permutability in finite groups

    Get PDF
    This paper has been published in Annali di Matematica Pura ed Applicata. Series IV, 189(4):567-570 (2010). Copyright 2010 by Springer-Verlag. The final publication is available at www.springerlink.com. http://link.springer.com/article/10.1007%2Fs10231-009-0124-7 http://dx.doi.org/10.1007/s10231-009-0124-7For a finite group G we define the graph Γ(G)\Gamma(G) to be the graph whose vertices are the conjugacy classes of cyclic subgroups of G and two conjugacy classes {A,B}\{\mathcal {A}, \mathcal {B}\} are joined by an edge if for some {AA,BBA}\{A \in \mathcal {A},\, B \in \mathcal {B}\, A\} and B permute. We characterise those groups G for which Γ(G)\Gamma(G) is complete.This paper has been suported by the research grants MTM2007-68010-C03-02 from MEC (Spain) and FEDER (European Union) and GV/2007/243 from Generalitat (Valencian Community).http://dx.doi.org/10.1007/s10231-009-0124-7Ballester Bolinches, A.; Cossey, J.; Esteban Romero, R. (2010). On a graph related to permutability in finite groups. Annali di Matematica Pura ed Applicata. 4(189). doi:10.1007/s10231-009-0124-74189Abe S., Iiyori N.: A generalization of prime graphs of finite groups. Hokkaido Math. J. 29(2), 391–407 (2000)Agrawal R.K.: Finite groups whose subnormal subgroups permute with all Sylow subgroups. Proc. Am. Math. Soc. 47(1), 77–83 (1975)Alejandre M.J., Ballester-Bolinches A., Pedraza-Aguilera M.C.: Finite soluble groups with permutable subnormal subgroups. J. Algebra 240(2), 705–722 (2001)Ballester-Bolinches A., Esteban-Romero R.: Sylow permutable subnormal subgroups of finite groups. J. Algebra 251(2), 727–738 (2002)Cooper C.D.H.: Power automorphisms of a group. Math. Z. 107, 335–356 (1968)Herzog M., Longobardi P., Maj M.: On a commuting graph on conjugacy classes of groups. Commun. Algebra 37(10), 3369–3387 (2009)Huppert B.: Endliche Gruppen I, vol. 134 of Grund. Math. Wiss. Springer, Berlin (1967)Longobardi P.: Gruppi finite a fattoriali modulari. Note Math. II, 73–100 (1982)Neumann B.: A problem of Paul Erdős on groups. J. Austral. Math. Soc. Ser. A 21, 467–472 (1976)Ore O.: Contributions to the theory of groups of finite order. Duke Math. J. 5, 431–460 (1939)Schmidt R.: Subgroup lattices of groups. De Gruyter Expositions in Mathematics, vol. 14. Walter de Gruyter, Berlin (1994)Zacher G.: I gruppi risolubli finiti in cui i sottogruppi di composizione coincidono con i sottogrupi quasi-normali. Atti Accad. Naz. Lincei Rend. cl. Sci. Fis. Mat. Natur. 37(8), 150–154 (1964

    Molecular aspects in pathogen-fruit interactions: Virulence and resistance

    Get PDF
    Fruit losses during postharvest storage and handling due to pathogen infections are one of the major problems in the global food chain supply. The application of chemical fungicides to control diseases is currently limited by legislation in some countries and also raises concerns about food and environmental safety. Exploring molecular aspects of pathogen-fruit interactions therefore has biological and economic significance as a means to help develop rational alternatives for disease control. In this review we present the current knowledge of molecular aspects in pathogen-fruit interactions, addressing the following topics: the application of new “omics” technologies for studying these interactions; the molecular mechanisms of fungal pathogen attack; the regulation of virulence by exogenous factors; and, finally, fruit defense mechanisms.Work in Tian’s lab has been funded by the National Natural Science Foundation of China (31530057; 31371863). Work in the LGC lab has been funded by the Spanish Ministry of Economy and Competitiveness (AGL2011-30519-C03-01 and AGL2014-55802-R) and the Generalitat Valenciana (PrometeoII/2014/027). Work in the IRTA lab has been funded by the Spanish Ministry of Economy and Competitiveness by three national projects AGL2008-04828-C01/AGR, AGL2011-30519-C03/AGR and AGL2014-55287-C02.Peer reviewe

    Oscillatory Modes of a Prominence-PCTR-Corona Slab Model

    Full text link
    Oscillations of magnetic structures in the solar corona have often been interpreted in terms of magnetohydrodynamic waves. We study the adiabatic magnetoacoustic modes of a prominence plasma slab with a uniform longitudinal magnetic field, surrounded by a prominence-corona transition region (PCTR) and a coronal medium. Considering linear small-amplitude oscillations, the dispersion relation for the magnetoacoustic slow and fast modes is deduced assuming evanescent-like perturbations in the coronal medium. In the system without PCTR, a classification of the oscillatory modes according to the polarisation of their eigenfunctions is made in order to distinguish modes with fast-like or slow-like properties. Internal and external slow modes are governed by the prominence and coronal properties respectively, and fast modes are mostly dominated by prominence conditions for the observed wavelengths. In addition, the inclusion of an isothermal PCTR does not substantially influence the mode frequencies, but new solutions (PCTR slow modes) are present.Comment: Accepted for publication in Solar Physic

    Damping mechanisms for oscillations in solar prominences

    Full text link
    Small amplitude oscillations are a commonly observed feature in prominences/filaments. These oscillations appear to be of local nature, are associated to the fine structure of prominence plasmas, and simultaneous flows and counterflows are also present. The existing observational evidence reveals that small amplitude oscillations, after excited, are damped in short spatial and temporal scales by some as yet not well determined physical mechanism(s). Commonly, these oscillations have been interpreted in terms of linear magnetohydrodynamic (MHD) waves, and this paper reviews the theoretical damping mechanisms that have been recently put forward in order to explain the observed attenuation scales. These mechanisms include thermal effects, through non-adiabatic processes, mass flows, resonant damping in non-uniform media, and partial ionization effects. The relevance of each mechanism is assessed by comparing the spatial and time scales produced by each of them with those obtained from observations. Also, the application of the latest theoretical results to perform prominence seismology is discussed, aiming to determine physical parameters in prominence plasmas that are difficult to measure by direct means.Comment: 36 pages, 16 figures, Space Science Reviews (accepted

    Complex network changes during a virtual reality rehabilitation protocol following stroke: a case study

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORStroke is one of the main causes of disabilities caused by injuries to the human central nervous system, yielding a wide range of mild to severe impairments that can compromise sensorimotor and cognitive functions. Although rehabilitation protocols may improve function of stroke survivors, patients often reach plateaus while undergoing therapy. Recently, virtual reality (VR) technologies have been paired with traditional rehabilitation aiming to improve function recovery after stroke. Aiming to better understand structural brain changes due to VR rehabilitation protocols, we modeled the brain as a graph and extracted three measures representing the network's topology: degree, clustering coefficient and betweenness centrality (BC). In this single case study, our results indicate that all metrics increased on the ipsilesional hemisphere, while remaining about the same at the contralesional site. Particularly, the number of functional connections increased in the lesion area overtime. In addition, the BC displayed the highest variations, and in brain regions related to the patient's cognitive and motor impairments; hence, we argue that this measure could be regarded as an indicative for brain plasticity mechanisms.891894FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIOR2013/07559-3Sem informação9. IEEE/EMBS International Conference on Neural Engineering (NER)20 a 23 de Março de 2019San Francisco, CA, Estados UnidosIEEE; EMB

    Search for Short-Term Periodicities in the Sun's Surface Rotation: A Revisit

    Full text link
    The power spectral analyses of the Sun's surface equatorial rotation rate determined from the Mt. Wilson daily Doppler velocity measurements during the period 3 December 1985 to 5 March 2007 suggests the existence of 7.6 year, 2.8 year, 1.47 year, 245 day, 182 day and 158 day periodicities in the surface equatorial rotation rate during the period before 1996. However, there is no variation of any kind in the more accurately measured data during the period after 1995. That is, the aforementioned periodicities in the data during the period before the year 1996 may be artifacts of the uncertainties of those data due to the frequent changes in the instrumentation of the Mt. Wilson spectrograph. On the other hand, the temporal behavior of most of the activity phenomena during cycles 22 (1986-1996) and 23 (after 1997) is considerably different. Therefore, the presence of the aforementioned short-term periodicities during the last cycle and absence of them in the current cycle may, in principle, be real temporal behavior of the solar rotation during these cycles.Comment: 11 pages, 6 figures, accepted for publication in Solar Physic
    corecore