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On a graph related to permutability in finite
groups

A. Ballester-Bolinches∗ John Cossey† R. Esteban-Romero‡

Abstract

For a finite group G we define the graph Γ(G) to be the graph
whose vertices are the conjugacy classes of cyclic subgroups of G and
two conjugacy classes A, B are joined by an edge if for some A ∈ A,
B ∈ B A and B permute. We characterise those groups G for which
Γ(G) is complete.
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1 Introduction
There are many ways in which a graph has been associated with a finite
group. Herzog, Longobardi and Maj [8] have defined a graph whose vertices
are the conjugacy classes of a group, with two vertices joined by and edge if
an element of one vertex commutes with some element of the other vertex.
This is a generalisation of the commuting graph of a group, which has the
elements of a group as vertices, joined by an edge if they commute (see
[9]). In this paper we will consider a generalisation of the graph of Herzog,
Longobardi and Maj. For a finite group G we define the graph Γ(G) to be
the graph whose vertices are the conjugacy classes of cyclic subgroups of G
and two conjugacy classes A, B are joined by an edge if for some A ∈ A,
B ∈ B A and B permute. We characterise those groups G for which Γ(G) is
complete.
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Recall that a subgroupH of a group G is said to be permutable in G ifHL
is a subgroup of G for every subgroup L of G. Permutability, like normality,
is not a transitive relation in general. We say that a group G is a PT -group if
the permutability is transitive in G, that is, if H is permutable in K and K is
permutable inG, thenH is permutable inG. According to a classical result of
Ore [10] permutable subgroups of finite groups are subnormal. Hence a finite
group is a PT-group if and only if every subnormal subgroup is permutable.

We prove:

Theorem 1. A finite group G is a soluble PT-group if and only if the graph
Γ(G) is complete.

2 Proof of Theorem 1
Suppose that G is a soluble PT-group. By a result of Zacher [12] G = AH
where A is an abelian normal subgroup of G, H is a nilpotent modular
subgroup of G, A and H have coprime orders and every subgroup of A is
normal in G. If X and Y are two cyclic subgroups of G, we can write
X = X0X1 and Y = Y0Y1, where X0 and Y0 are subgroups of A and X1

and Y1 have orders dividing |H|. Since H is a Hall subgroup of G we can,
by replacing X and Y by conjugates if necessary, assume that X1 and Y1

are subgroups of H. Since every subgroup of A is normal in G we have
Y0X1 = X1Y0 and since H is modular we have X1Y1 is a subgroup of G. It
now follows that X0X1Y0Y1 = Y0Y1X0X1 is a subgroup, that is, X and Y
permute.

In the other direction, we argue by induction on the order of G. We
begin by showing that G is a soluble PT-group if G has at least two minimal
normal subgroups. If M and N are two minimal normal subgroups of G, then
G/M and G/M clearly satisfy the hypothesis of the theorem. Hence G/M
and G/N are soluble PT-groups. It follows that NM/M is a minimal normal
subgroup of a soluble PT-group, and so is cyclic of prime order because every
soluble PT-group is supersoluble. Similarly MN/N is cyclic of prime order
and hence M and N have prime orders, p and q say (and G is soluble).
Then, for any prime r 6= p, all r-chief factors of G/M are G-isomorphic.
Further, by Zacher’s Theorem [12], Sylow r-subgroups of G/M are abelian
if r-chief factors are noncentral and modular if all r-chief factors are central.
If p 6= q by considering G/N we have all p-chief factors G-isomorphic and
Sylow p-subgroups abelian if p-chief factors are noncentral and modular if
p-chief factors are central. In this case G is a PT-group by [3, Corollary 3]
and [4, Theorem 2] (note that G is supersoluble).
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Thus we suppose that all minimal normal subgroups have the same prime
order p. If M and N are minimal normal subgroups and p divides |G/MN |,
then bothM andN areG-isomorphic to a (fixed) p-chief factor ofG/MN and
so are G-isomorphic. Thus all p-chief factors are G-isomorphic. Therefore G
is supersoluble and all chief factors of the same order are G-isomorphic. By
[3, Corollary 3] G is a group in which every subnormal subgroup permutes
with all Sylow subgroups (G is a PST-group). If the p-chief factors are
central, then G is a p-group with all proper quotients modular and so is
itself modular, since by Theorem of Longobardi [7] such a group must have
a unique minimal normal subgroup. Applying a result of Agrawal [2], G
has an abelian Sylow p-subgroup and it then follows that G is a PT-group
by [4, Theorem 2]. Assume now that MN is a Sylow p-subgroup of G.
Let M = 〈m〉, N = 〈n〉. By hypothesis, given a p′-element y ∈ G, 〈mn〉
permutes with a conjugate 〈yg〉 of 〈y〉. Hence 〈mn〉〈yg〉 ∩MN = 〈mn〉 is
normalised by yg. Call mg = ma1 , ng = ma2 and my = mb1 , ny = nb2 and
(mn)g

−1yg = (mn)c. Hence (mn)g
−1yg = mb1nb2 = (mn)c, which implies that

b1 ≡ b2 ≡ c (mod p). Consequently M and N are G-isomorphic. Since G has
all Sylow subgroups modular, it follows that G is a PT-group by [3, Corollary
3] and [4, Theorem 2].

We now suppose that G has a unique minimal normal subgroup N . If N is
not soluble, then N = S1×· · ·×Sr, where the Si are isomorphic (nonabelian)
simple groups. Let p and q be different primes dividing the order of S1 and
let x1 and y1 be elements of S1 of orders p and q, respectively. For 2 ≤ i ≤ r,
let xi, yi be the images of x1, y1 under the isomorphism between S1 and
Si. Then 〈x1 · · ·xr〉 permutes with a conjugate 〈(y1 · · · yr)g〉 of 〈y1 · · · yr〉.
The projection of 〈x1 · · · xr〉〈(y1 · · · yr)g〉 onto S1 is then a subgroup of S1

of order pq and so S1 has subgroups of order pq for every pair of primes
dividing its order. A result of Abe and Iiyori [1] shows that this is impossible.
Consequently N is a p-group for some prime p.

If N is not contained in the Frattini subgroup of G, then G is a primitive
soluble group andG = NM , whereM is a maximal subgroup ofG, N∩M = 1
and N is self-centralising. Since M is isomorphic to the soluble PT-group
G/N , M is the product of its nilpotent residual F = MN, which is an abelian
normal Hall subgroup of odd order, and a complement C which acts on
F as power automorphisms ([12]). Let Q be a cyclic normal subgroup of
M . Suppose that QP 6= PQ for some cyclic subgroup P of N . We have
QgP = PQg for some g ∈ G and we can assume that g ∈ M . Since Q is
normal in M we have Qg = Q, giving a contradiction. Thus P is normalised
by Q since P = N ∩ PQ. It now follows that every element of F acts as a
power automorphism on N and hence F acts as a power automorphism group
on N . Since power automorphisms are central in the power automorphism
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group of N ([5, Theorem 2.2.1]), F is central in M and so F = 1. Thus M
is a nilpotent modular group. In particular M is a p′-group. Let Q be a
non-abelian Sylow q-subgroup of M . By Iwasawa’s Theorem ([11, Theorem
2.4.14] Q has an abelian normal subgroup Q0 with cyclic supplement S with
S acting as a power automorphism group on Q0 or Q is Hamiltonian. In both
cases every cyclic subgroup of Q0 is normal in Q and hence in M . Let U be a
cyclic subgroup of N and let R cyclic subgroup of Q0. By hypothesis, there
exits an element a ∈ M such that RUa is subgroup. Since Ra = R, we have
that RU is also a subgroup and U is normalised by R. Further, there exists
an element m ∈M such that S permutes with Um and so S and R normalise
Um. This implies that Q normalises U and Q acts as power automorphisms
on N . It now follows that M acts as power automorphisms on N and so N
is a cyclic group of order p and M is cyclic of order dividing p− 1 and G is
clearly a PT-group.

Now suppose that N is contained in the Frattini subgroup of G. If G is
nilpotent, then G is a p-group since it has a unique minimal normal subgroup
and G/N is an modular group. Assume that G is not modular. Let M(p)
denote the nonabelian group of order p3 and exponent p for p odd and the
dihedral group of order 8 for p = 2. By the Theorem of Longobardi [7] either
G is the central product of a subgroup P isomorphic to M(p) and another
subgroup or G is isomorphic to

G0 = 〈a, b, w : ap
n

= wp = 1, ab = a1+p
s

, bp
j

= ap
n−s

, aw = a1+p
n−1

, bw = b〉,

where 0 < s < n, s ≥ 2 if p = 2 and j ≥ n − s. In the first case it is
clear that if P is generated by a and b of order p no conjugate of a will
commute with b and hence will not permute with b. Now consider G0 and
let C = 〈aαbβ〉 be a cyclic subgroup of H = 〈a, b〉. Then C permutes with
〈wg〉 for some g ∈ G0 and so, being of index p in C〈wg〉, is normalised by
wg. Since [w, g] ∈ 〈apn−1〉, C is also normalised by w. Thus w acts as a
power automorphism on H. If p is odd, H is regular ([6, III, Satz 11.4]) and
so it acts as a universal power automorphism on H by [5, Theorem 5.3.1],
a contradiction. Hence we suppose p = 2. Since w centralises b and b has
order at least 4, w acts as universal power automorphism on H by a theorem
of Napolitani [11, Theorem 2.3.24], again a contradiction. Thus G cannot be
nilpotent.

If G is not nilpotent, then E = GN 6= 1 and so N ≤ E. Since G/N is a
PT-group, G supersoluble, E is nilpotent and so it is a p-group. Furthermore
E/N is abelian and complemented in G/N by a p′-subgroup B/N say which
acts on E/N as power automorphisms. Then there exists a p′-subgroup D
of G complementing E in G. If CD(E/N) 6= 1 then CD(E/N) is a nontrivial
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normal subgroup of G, a contradiction. It follows that D is cyclic of order
dividing p − 1. We have that N ≤ Z(E). Consequently [ap, b] = [a, b]p = 1
for every a, b ∈ E by [6, III, Hilfssatz 1.3]. This implies that Ep ≤ Z(E).
Assume that Ep is not trivial. Hence Ep is cyclic because Ep is an abelian
normal subgroup of G. Let Ep = 〈a〉, where a has order pn. Suppose that
N is a proper subgroup of Ep. Given x ∈ G, we have that ax = ai and so all
chief factors of G below P p are G-isomorphic. Appying again [3, Corollary 3]
and [4, Theorem 2], G is a PT-group. Assume now that Ep = N . Let x be
an element of E not in N . If x has order greater than p, then N ≤ 〈xp〉 ≤ Ep

and 〈x〉/N is a normal subgroup of G/N . Since all chief factors of G between
N and E are G-isomorphic and the same happens with all chief factors of
G below 〈x〉, we conclude again that all chief factors of G are G-isomorphic
and G is a PT-group. Thus all elements of E are of order p. If E is abelian
then E is cyclic and so E = N ≤ Φ(G), a contradiction. Suppose that E
is non-abelian and x, y ∈ E do not commute, so that N = 〈[x, y]〉. Since
〈x〉 permutes with 〈yg〉 for some g ∈ G, we have that 〈x, yg〉 is of order
p2 and hence abelian. Since 〈yN〉 is a normal subgroup of G/N , we have
that 〈yg〉 ≤ 〈y,N〉 and it follows that yg = yjn for some n ∈ N and some
integer j coprime with p. Then [x, yg] = [x, yjn] = [x, yj] = [x, y]j 6= 1, a
contradiction. This completes the proof.
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