48 research outputs found

    Processos de subjetivação e relações micropolíticas do modo de atenção psicossocial

    Get PDF
    This article aims to problematize the micropolitical relationships produced in the Psychosocial Care Center (caps), Alegrete-RS, focusing on ethical principles in relation with customers and teamwork, identifying similarities and differences with the propositions of psychosocial care. This study follows a qualitative, descriptive and analytical approach. Interviews were conducted with users and workers, as well as participant observation. Aspects of subjective mobilization, innovation and the creation of relationships that produce ruptures in institutional practices were found, increasing subjectivation, negotiation, agency, resistance, and invention of various relationship and interaction devices in society, producing existential territories in the psychosocial care perspective. Micropolitical relations serve as agents for the production of meaning and the valorization of knowledges and enhancement of knowledge meaning, featuring an ethical stance regarding relationsEl artículo tiene como objetivo problematizar las relaciones micropolíticas producidas en el Centro de Atención Psicosocial (caps) de Alegrete-RS, enfoncando los principios éticos de las relaciones de los trabajadores con la clientela y en el trabajo en equipo, identificando las aproximaciones y los distanciamientos con las propuestas de atención psicosocial. Se trata de un estudio de abordaje cualitativo, descriptivo y analítico. Se realizaron entrevistas con los usuarios y trabajadores, y observación participante. Se encontraron aspectos de movilización subjetiva, innovación y creación de relaciones que producen rupturas en las prácticas institucionales, potencializando la subjetivación, los agenciamientos, las resistencias y la invención de diversos dispositivos de relación e interacción en la sociedad, produciendo territorios existenciales en la perspectiva de la atención psicosocial. Las relaciones micropolíticas trabajan para agenciar procesos de producción de sentido y valorización de los saberes, caracterizando una postura ética en el ámbito de las relacionesO artigo objetiva problematizar as relações micropolíticas produzidas no Centro de Atenção Psicossocial (caps), de Alegrete-RS, com foco nos princípios éticos da relação dos trabalhadores com a clientela e no trabalho em equipe, identificando aproximações e distanciamentos com as proposições da atenção psicossocial. Trata-se de um estudo de abordagem qualitativa, descritiva e analítica. Realizaram-se entrevistas com usuários e trabalhadores, e observação participante. Encontraram-se aspectos de mobilização subjetiva, inovação e criação de relações que produzem rupturas nas práticas institucionais, potencializando subjetivação, agenciamentos, resistências e invenção de dispositivos diversos de relação e interação na sociedade, produzindo territórios existenciais, na perspectiva da atenção psicossocial. As relações micropolíticas trabalham para agenciar processos de produção de sentido e valorização de saberes, caracterizando uma postura ética no âmbito das relaçõe

    HLA-DRB1-DQB1 Haplotypes Confer Susceptibility and Resistance to Multiple Sclerosis in Sardinia

    Get PDF
    Introduction: Genetic predisposition to multiple sclerosis (MS) in Sardinia (Italy) has been associated with five DRB1*-DQB1* haplotypes of the human leukocyte antigen (HLA). Given the complexity of these associations, an in-depth re-analysis was performed with the specific aims of confirming the haplotype associations; establishing the independence of the associated haplotypes; and assessing patients ’ genotypic risk of developing MS. Methods and Results: A transmission disequilibrium test (TDT) of the DRB1*-DQB1 * haplotypes in 943 trio families

    Relapse according to antipsychotic treatment in schizophrenic patients: a propensity-adjusted analysis

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To compare the rate of relapse as a function of antipsychotic treatment (monotherapy vs. polypharmacy) in schizophrenic patients over a 2-year period.</p> <p>Methods</p> <p>Using data from a multicenter cohort study conducted in France, we performed a propensity-adjusted analysis to examine the association between the rate of relapse over a 2-year period and antipsychotic treatment (monotherapy vs. polypharmacy).</p> <p>Results</p> <p>Our sample consisted in 183 patients; 50 patients (27.3%) had at least one period of relapse and 133 had no relapse (72.7%). Thirty-eight (37.7) percent of the patients received polypharmacy. The most severely ill patients were given polypharmacy: the age at onset of illness was lower in the polypharmacy group (p = 0.03). Patients that received polypharmacy also presented a higher general psychopathology PANSS subscore (p = 0.04) but no statistically significant difference was found in the PANSS total score or the PANSS positive or negative subscales. These patients were more likely to be given prescriptions for sedative drugs (p < 0.01) and antidepressant medications (p = 0.03). Relapse was found in 23.7% of patients given monotherapy and 33.3% given polypharmacy (p = 0.16). After stratification according to quintiles of the propensity score, which eliminated all significant differences for baseline characteristics, antipsychotic polypharmacy was not statistically associated with an increase of relapse: HR = 1.686 (0.812; 2.505).</p> <p>Conclusion</p> <p>After propensity score adjustment, antipsychotic polypharmacy is not statistically associated to an increase of relapse. Future randomised studies are needed to assess the impact of antipsychotic polypharmacy in schizophrenia.</p

    MPP+-induced cytotoxicity in neuroblastoma cells: Antagonism and reversal by guanosine

    Get PDF
    Guanosine exerts neuroprotective effects in the central nervous system. Apoptosis, a morphological form of programmed cell death, is implicated in the pathophysiology of Parkinson’s disease (PD). MPP+, a dopaminergic neurotoxin, produces in vivo and in vitro cellular changes characteristic of PD, such as cytotoxicity, resulting in apoptosis. Undifferentiated human SH-SY5Y neuroblastoma cells had been used as an in vitro model of Parkinson’s disease. We investigated if extracellular guanosine affected MPP+-induced cytotoxicity and examined the molecular mechanisms mediating its effects. Exposure of neuroblastoma cells to MPP+ (10 μM–5 mM for 24–72 h) induced DNA fragmentation in a time-dependent manner (p < 0.05). Administration of guanosine (100 μM) before, concomitantly with or, importantly, after the addition of MPP+ abolished MPP+-induced DNA fragmentation. Addition of MPP+ (500 μM) to cells increased caspase-3 activity over 72 h (p < 0.05), and this was abolished by pre- or co-treatment with guanosine. Exposure of cells to pertussis toxin prior to MPP+ eliminated the anti-apoptotic effect of guanosine, indicating that this effect is dependent on a Gi protein-coupled receptor, most likely the putative guanosine receptor. The protection by guanosine was also abolished by the selective inhibitor of the enzyme PI-3-K/Akt/PKB (LY294002), confirming that this pathway plays a decisive role in this effect of guanosine. Neither MPP+ nor guanosine had any significant effect on α-synuclein expression. Thus, guanosine antagonizes and reverses MPP+-induced cytotoxicity of neuroblastoma cells via activation of the cell survival pathway, PI-3-K/Akt/PKB. Our results suggest that guanosine may be an effective pharmacological intervention in PD

    Genetic Control of a Central Pattern Generator: Rhythmic Oromotor Movement in Mice Is Controlled by a Major Locus near Atp1a2

    Get PDF
    Fluid licking in mice is a rhythmic behavior that is controlled by a central pattern generator (CPG) located in a complex of brainstem nuclei. C57BL/6J (B6) and DBA/2J (D2) strains differ significantly in water-restricted licking, with a highly heritable difference in rates (h2≥0.62) and a corresponding 20% difference in interlick interval (mean ± SEM = 116.3±1 vs 95.4±1.1 ms). We systematically quantified motor output in these strains, their F1 hybrids, and a set of 64 BXD progeny strains. The mean primary interlick interval (MPI) varied continuously among progeny strains. We detected a significant quantitative trait locus (QTL) for a CPG controlling lick rate on Chr 1 (Lick1), and a suggestive locus on Chr 10 (Lick10). Linkage was verified by testing of B6.D2-1D congenic stock in which a segment of Chr 1 of the D2 strain was introgressed onto the B6 parent. The Lick1 interval on distal Chr 1 contains several strong candidate genes. One of these is a sodium/potassium pump subunit (Atp1a2) with widespread expression in astrocytes, as well as in a restricted population of neurons. Both this subunit and the entire Na+/K+-ATPase molecule have been implicated in rhythmogenesis for respiration and locomotion. Sequence variants in or near Apt1a2 strongly modulate expression of the cognate mRNA in multiple brain regions. This gene region has recently been sequenced exhaustively and we have cataloged over 300 non-coding and synonymous mutations segregating among BXD strains, one or more of which is likely to contribute to differences in central pattern generator tempo

    The importance of Antarctic krill in biogeochemical cycles

    Get PDF
    Antarctic krill (Euphausia superba) are swarming, oceanic crustaceans, up to two inches long, and best known as prey for whales and penguins – but they have another important role. With their large size, high biomass and daily vertical migrations they transport and transform essential nutrients, stimulate primary productivity and influence the carbon sink. Antarctic krill are also fished by the Southern Ocean’s largest fishery. Yet how krill fishing impacts nutrient fertilisation and the carbon sink in the Southern Ocean is poorly understood. Our synthesis shows fishery management should consider the influential biogeochemical role of both adult and larval Antarctic krill

    P2 receptors are involved in the mediation of motivation-related behavior

    Get PDF
    The importance of purinergic signaling in the intact mesolimbic–mesocortical circuit of the brain of freely moving rats is reviewed. In the rat, an endogenous ADP/ATPergic tone reinforces the release of dopamine from the axon terminals in the nucleus accumbens as well as from the somatodendritic region of these neurons in the ventral tegmental area, as well as the release of glutamate, probably via P2Y1 receptor stimulation. Similar mechanisms may regulate the release of glutamate in both areas of the brain. Dopamine and glutamate determine in concert the activity of the accumbal GABAergic, medium-size spiny neurons thought to act as an interface between the limbic cortex and the extrapyramidal motor system. These neurons project to the pallidal and mesencephalic areas, thereby mediating the behavioral reaction of the animal in response to a motivation-related stimulus. There is evidence that extracellular ADP/ATP promotes goal-directed behavior, e.g., intention and feeding, via dopamine, probably via P2Y1 receptor stimulation. Accumbal P2 receptor-mediated glutamatergic mechanisms seem to counteract the dopaminergic effects on behavior. Furthermore, adaptive changes of motivation-related behavior, e.g., by chronic succession of starvation and feeding or by repeated amphetamine administration, are accompanied by changes in the expression of the P2Y1 receptor, thought to modulate the sensitivity of the animal to respond to certain stimuli

    Neuroprotection by adenosine in the brain: From A1 receptor activation to A2A receptor blockade

    Get PDF
    Adenosine is a neuromodulator that operates via the most abundant inhibitory adenosine A1 receptors (A1Rs) and the less abundant, but widespread, facilitatory A2ARs. It is commonly assumed that A1Rs play a key role in neuroprotection since they decrease glutamate release and hyperpolarize neurons. In fact, A1R activation at the onset of neuronal injury attenuates brain damage, whereas its blockade exacerbates damage in adult animals. However, there is a down-regulation of central A1Rs in chronic noxious situations. In contrast, A2ARs are up-regulated in noxious brain conditions and their blockade confers robust brain neuroprotection in adult animals. The brain neuroprotective effect of A2AR antagonists is maintained in chronic noxious brain conditions without observable peripheral effects, thus justifying the interest of A2AR antagonists as novel protective agents in neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease, ischemic brain damage and epilepsy. The greater interest of A2AR blockade compared to A1R activation does not mean that A1R activation is irrelevant for a neuroprotective strategy. In fact, it is proposed that coupling A2AR antagonists with strategies aimed at bursting the levels of extracellular adenosine (by inhibiting adenosine kinase) to activate A1Rs might constitute the more robust brain neuroprotective strategy based on the adenosine neuromodulatory system. This strategy should be useful in adult animals and especially in the elderly (where brain pathologies are prevalent) but is not valid for fetus or newborns where the impact of adenosine receptors on brain damage is different
    corecore