9 research outputs found

    A mitogenomic timetree for Darwin’s enigmatic South American mammal Macrauchenia patachonica

    Get PDF
    The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95% credibility interval, 56.64–77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives.Facultad de Ciencias Naturales y Muse

    A mitogenomic timetree for Darwin’s enigmatic South American mammal Macrauchenia patachonica

    Get PDF
    The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of B66Ma (95% credibility interval, 56.64–77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives.Facultad de Ciencias Naturales y Muse

    The Contribution of Late Pleistocene Megafauna Finds to Submerged Archaeology and the Interpretation of Ancient Coastal Landscapes

    No full text
    In 2013, two Pleistocene megafaunal remains, a single mammoth tooth and a partial juvenile mastodon mandible with teeth were recovered by a scallop-fisherman from two separate locations in the Merrimack River embayment off the coast of New Hampshire and Massachusetts. These specimens follow on previous finds by fishermen in the same locale over the last two decades, as well as numerous other offshore megafauna specimens and prehistoric stone tools, which have occurred in the Gulf of Maine for \u3e 50 years. This paper examines the value and scientific sampling potential of previously recovered specimens and isolated finds in the Gulf of Maine. Specifically, it discusses isolated finds as indicators of submerged archaeological site preservation in the region, and as data sources that provide information about regional geomorphology, climate conditions, paleogenomics, and species extinctions in the terminal Pleistocene. Furthermore, submerged paleo-deltas, due to their depositional characteristics, are identified to have deeply buried paleosols with significant preservation potential for early human and environmental history. Therefore, the Merrimack River paleo-delta, and similar offshore submerged features elsewhere, serve not only as research opportunities into early human migration and settlement, but are also storehouses of climate and environmental data, which merit special recognition and protection from environmental and man-made activities that may impact or disturb these intact submerged landscapes

    Genomic basis for skin phenotype and cold adaptation in the extinct Steller’s sea cow

    Get PDF
    Steller’s sea cow, an extinct sirenian and one of the largest Quaternary mammals, was described by Georg Steller in 1741 and eradicated by humans within 27 years. Here, we complement Steller’s descriptions with paleogenomic data from 12 individuals. We identified convergent evolution between Steller’s sea cow and cetaceans but not extant sirenians, suggesting a role of several genes in adaptation to cold aquatic (or marine) environments. Among these are inactivations of lipoxygenase genes, which in humans and mouse models cause ichthyosis, a skin disease characterized by a thick, hyperkeratotic epidermis that recapitulates Steller’s sea cows’ reportedly bark-like skin. We also found that Steller’s sea cows’ abundance was continuously declining for tens of thousands of years before their description, implying that environmental changes also contributed to their extinction

    A comprehensive genomic history of extinct and living elephants

    Get PDF
    Elephantids are the world’s most iconic megafaunal family, yet there is no comprehensive genomic assessment of their relationships. We report a total of 14 genomes, including 2 from the American mastodon, which is an extinct elephantid relative, and 12 spanning all three extant and three extinct elephantid species including an ∼120,000-y-old straight-tusked elephant, a Columbian mammoth, and woolly mammoths. Earlier genetic studies modeled elephantid evolution via simple bifurcating trees, but here we show that interspecies hybridization has been a recurrent feature of elephantid evolution. We found that the genetic makeup of the straight-tusked elephant, previously placed as a sister group to African forest elephants based on lower coverage data, in fact comprises three major components. Most of the straight-tusked elephant’s ancestry derives from a lineage related to the ancestor of African elephants while its remaining ancestry consists of a large contribution from a lineage related to forest elephants and another related to mammoths. Columbian and woolly mammoths also showed evidence of interbreeding, likely following a latitudinal cline across North America. While hybridization events have shaped elephantid history in profound ways, isolation also appears to have played an important role. Our data reveal nearly complete isolation between the ancestors of the African forest and savanna elephants for ∼500,000 y, providing compelling justification for the conservation of forest and savanna elephants as separate species
    corecore