428 research outputs found

    New composite models of partially ionized protoplanetary disks

    Full text link
    We study an accretion disk in which three different regions may coexist: MHD turbulent regions, dead zones and gravitationally unstable regions. Although the dead zones are stable, there is some transport due to the Reynolds stress associated with waves emitted from the turbulent layers. We model the transport in each of the different regions by its own α\alpha parameter, this being 10 to 10310^{3} times smaller in dead zones than in active layers. In gravitationally unstable regions, α\alpha is determined by the fact that the disk self-adjusts to a state of marginal stability. We construct steady-state models of such disks. We find that for uniform mass flow, the disk has to be more massive, hotter and thicker at the radii where there is a dead zone. In disks in which the dead zone is very massive, gravitational instabilities are present. Whether such models are realistic or not depends on whether hydrodynamical fluctuations driven by the turbulent layers can penetrate all the way inside the dead zone. This may be more easily achieved when the ratio of the mass of the active layer to that of the dead zone is relatively large, which in our models corresponds to α\alpha in the dead zone being about 10% of α\alpha in the active layers. If the disk is at some stage of its evolution not in steady-state, then the surface density will evolve toward the steady-state solution. However, if α\alpha in the dead zone is much smaller than in the active zone, the timescale for the parts of the disk beyond a few AU to reach steady-state may become longer than the disk lifetime. Steady-state disks with dead zones are a more favorable environment for planet formation than standard disks, since the dead zone is typically 10 times more massive than a corresponding turbulent zone at the same location.Comment: 13 pages, 5 figures, accepted for publication in Ap

    Nonuniform viscosity in the solar nebula and large masses of Jupiter and Saturn

    Get PDF
    I report a novel theory that nonuniform viscous frictional force in the solar nebula accounts for the largest mass of Jupiter and Saturn and their largest amount of H and He among the planets, two outstanding facts that are unsolved puzzles in our understanding of origin of the Solar System. It is shown that the nebula model of uniform viscosity does not match the present planet masses. By studying current known viscosity mechanisms, I show that viscosity is more efficient in the inner region inside Mercury and the outer region outside Jupiter-Saturn than the intermediate region. The more efficient viscosity drives faster radial inflow of material during the nebula evolution. Because the inflow in the outer region is faster than the intermediate region, the material tends to accumulate in Jupiter-Saturn region which is between the outer and intermediate region. It is demonstrated that the gas trapping time of Jovian planets is longer than the inflow time in the outer region. Therefore the gas already flows to Jupiter-Saturn region before Uranus and Neptune can capture significant gas. But the inflow in the Jupiter-Saturn region is so slow that they can capture large amount of gas before the gas can flow further inward. Hence they have larger masses with larger H and He content than Uranus and Neptune. I also extend the discussion to the masses of the terrestrial planets, especially low mass of Mercury. The advantages of this theory are discussed.Comment: 4 pages, 1 figure, A&A Letters accepte

    The influence of the Hall effect on the global stability of cool protostellar disks

    Full text link
    The influence of the Hall effect on the global stability of cool Kepler disks under the influence of an axial magnetic field is considered. For sufficiently large magnetic Reynolds numbers Rm the magnetorotational instability (MRI) exists in a finite interval of magnetic field amplitudes, BB_{min} < BB < BB_{max}. For Kepler disks the pure MRI needs both rather high Rm (representing the needed electrical conductivity) as well as BB_{min} of order 0.1 G. The magnetic field pattern resulting from our global and linear calculations is of quadrupolar parity. For magnetic fields antiparallelantiparallel to the rotation axis the Hall effect reduces the minimum magnetic Reynolds number by about one order of magnitude. The BB_{min}, however, is even (sightly) increased (see Fig. 6). For magnetic fields parallelparallel to the rotation axis the Hall effect drives its own instability without the action of the Lorentz force. The corresponding critical magnetic Reynolds number proves to be larger with Hall effect (Rm ~ 10) than without Hall effect (Rm ~ 7) so that the Hall effect for parallel fields even disturbs the formation of MHD-instability in cool protoplanetary disks. If the disk is supercritical then the main result of the Hall effect for positive fields is the strong reduction of the minimum magnetic field amplitude which is necessary to start the instability. Observations must show whether in star-forming regions the rotation axis and the magnetic field orientation are correlated or are anticorrelated. If the magnetic fields are high enough then our model predicts the dominance of fields antiparallel to the rotation axis.Comment: 7 pages, 7 figures, Astron. Astrophys. (in press

    Hybrid viscosity and the magnetoviscous instability in hot, collisionless accretion disks

    Full text link
    We aim to illustrate the role of hot protons in enhancing the magnetorotational instability (MRI) via the ``hybrid'' viscosity, which is due to the redirection of protons interacting with static magnetic field perturbations, and to establish that it is the only relevant mechanism in this situation. It has recently been shown by Balbus \cite{PBM1} and Islam & Balbus \cite{PBM11} using a fluid approach that viscous momentum transport is key to the development of the MRI in accretion disks for a wide range of parameters. However, their results do not apply in hot, advection-dominated disks, which are collisionless. We develop a fluid picture using the hybrid viscosity mechanism, that applies in the collisionless limit. We demonstrate that viscous effects arising from this mechanism can significantly enhance the growth of the MRI as long as the plasma \beta \gapprox 80. Our results facilitate for the first time a direct comparison between the MHD and quasi-kinetic treatments of the magnetoviscous instability in hot, collisionless disks.Comment: To appear in the proceedings of the first Kodai-Trieste workshop on Plasma Astrophysics (Aug 27-Sept 07 2007), Springer Astrophysics and Space Science Proceedings serie

    Differential Rotation in Neutron Stars: Magnetic Braking and Viscous Damping

    Get PDF
    Diffferentially rotating stars can support significantly more mass in equilibrium than nonrotating or uniformly rotating stars, according to general relativity. The remnant of a binary neutron star merger may give rise to such a ``hypermassive'' object. While such a star may be dynamically stable against gravitational collapse and bar formation, the radial stabilization due to differential rotation is likely to be temporary. Magnetic braking and viscosity combine to drive the star to uniform rotation, even if the seed magnetic field and the viscosity are small. This process inevitably leads to delayed collapse, which will be accompanied by a delayed gravitational wave burst and, possibly, a gamma-ray burst. We provide a simple, Newtonian, MHD calculation of the braking of differential rotation by magnetic fields and viscosity. The star is idealized as a differentially rotating, infinite cylinder consisting of a homogeneous, incompressible conducting gas. We solve analytically the simplest case in which the gas has no viscosity and the star resides in an exterior vacuum. We treat numerically cases in which the gas has internal viscosity and the star is embedded in an exterior, low-density, conducting medium. Our evolution calculations are presented to stimulate more realistic MHD simulations in full 3+1 general relativity. They serve to identify some of the key physical and numerical parameters, scaling behavior and competing timescales that characterize this important process.Comment: 11 pages. To appear in ApJ (November 20, 2000

    Angular Momentum Transfer in Star-Discs Encounters: The Case of Low-Mass Discs

    Full text link
    A prerequisite for the formation of stars and planetary systems is that angular momentum is transported in some way from the inner regions of the accretion disc. Tidal effects may play an important part in this angular momentum transport. Here the angular momentum transfer in an star-disc encounter is investigated numerically for a variety of encounter parameters in the case of low mass discs. Although good agreement is found with analytical results for the entire disc, the loss {\it inside} the disc can be up to an order of magnitude higher than previously assumed. The differences in angular momentum transport by secondaries on a hyperbolic, parabolic and elliptical path are shown, and it is found that a succession of distant encounters might be equally, if not more, successful in removing angular momentum than single close encounter.Comment: 11pages, 8 figures, 1 tabl

    Simulation of the Magnetothermal Instability

    Get PDF
    In many magnetized, dilute astrophysical plasmas, thermal conduction occurs almost exclusively parallel to magnetic field lines. In this case, the usual stability criterion for convective stability, the Schwarzschild criterion, which depends on entropy gradients, is modified. In the magnetized long mean free path regime, instability occurs for small wavenumbers when (dP/dz)(dln T/dz) > 0, which we refer to as the Balbus criterion. We refer to the convective-type instability that results as the magnetothermal instability (MTI). We use the equations of MHD with anisotropic electron heat conduction to numerically simulate the linear growth and nonlinear saturation of the MTI in plane-parallel atmospheres that are unstable according to the Balbus criterion. The linear growth rates measured from the simulations are in excellent agreement with the weak field dispersion relation. The addition of isotropic conduction, e.g. radiation, or strong magnetic fields can damp the growth of the MTI and affect the nonlinear regime. The instability saturates when the atmosphere becomes isothermal as the source of free energy is exhausted. By maintaining a fixed temperature difference between the top and bottom boundaries of the simulation domain, sustained convective turbulence can be driven. MTI-stable layers introduced by isotropic conduction are used to prevent the formation of unresolved, thermal boundary layers. We find that the largest component of the time-averaged heat flux is due to advective motions as opposed to the actual thermal conduction itself. Finally, we explore the implications of this instability for a variety of astrophysical systems, such as neutron stars, the hot intracluster medium of galaxy clusters, and the structure of radiatively inefficient accretion flows.Comment: Accepted for publication in Astrophysics and Space Science as proceedings of the 6th High Energy Density Laboratory Astrophysics (HEDLA) Conferenc

    The accretion disc in the quasar SDSS J0924+0219

    Full text link
    We present single-epoch multi-wavelength optical-NIR observations of the "anomalous" lensed quasar SDSS J0924+0219, made using the Magellan 6.5-metre Baade telescope at Las Campanas Observatory, Chile. The data clearly resolve the anomalous bright image pair in the lensed system, and exhibit a strong decrease in the anomalous flux ratio with decreasing wavelength. This is interpreted as a result of microlensing of a source of decreasing size in the core of the lensed quasar. We model the radius of the continuum emission region, sigma, as a power-law in wavelength, sigma lambda^zeta. We place an upper limit on the Gaussian radius of the u'-band emission region of 3.04E16 h70^{-1/2} (/M_sun)^{1/2} cm, and constrain the size-wavelength power-law index to zeta<1.34 at 95% confidence. These observations rule out an alpha-disc prescription for the accretion disc in SDSS J0924+0219 with 94% confidence.Comment: 8 pages, 5 figures. Accepted for publication in MNRA

    Coronal winds powered by radiative driving

    Full text link
    A two-component phenomenological model developed originally for zeta Puppis is revised in order to model the outflows of late-type O dwarfs that exhibit the weak-wind phenomenon. With the theory's standard parameters for a generic weak-wind star, the ambient gas is heated to coronal temperatures ~ 3 x 10^{6}K at radii > 1.4 R, with cool radiativly-driven gas being then confined to dense clumps with filling factor ~ 0.02. Radiative driving ceases at radius ~ 2.1R when the clumps are finally destroyed by heat conduction from the coronal gas. Thereafter, the outflow is a pure coronal wind, which cools and decelerates reaching infinity with terminal velocity ~ 980$ km/ s.Comment: 10 pages, 4 figure

    Differential rotation of main-sequence dwarfs and its dynamo-efficiency

    Full text link
    A new version of a numerical model of stellar differential rotation based on mean-field hydrodynamics is presented and tested by computing the differential rotation of the Sun. The model is then applied to four individual stars including two moderate and two fast rotators to reproduce their observed differential rotation quite closely. A series of models for rapidly rotating (Prot=1P_{rot} = 1 day) stars of different masses and compositions is generated. The effective temperature is found convenient to parameterize the differential rotation: variations with metallicity, that are quite pronounced when the differential rotation is considered as a function of the stellar mass, almost disappear in the dependence of differential rotation on temperature. The differential rotation increases steadily with surface temperature to exceed the largest differential rotation observed to date for the hottest F-stars we considered. This strong differential rotation is, however, found not to be efficient for dynamos when the efficiency is estimated with the standard CΩC_\Omega-parameter of dynamo models. On the contrary, the small differential rotation of M-stars is the most dynamo-efficient. The meridional flow near the bottom of the convection zone is not small compared to the flow at the top in all our computations. The flow is distributed over the entire convection zone in slow rotators but retreats to the convection zone boundaries with increasing rotation rate, to consist of two near-boundary jets in rapid rotators. The implications of the change of the flow structure for stellar dynamos are briefly discussed.Comment: 9 pages, 11 figures, submitted to MNRA
    corecore