We aim to illustrate the role of hot protons in enhancing the
magnetorotational instability (MRI) via the ``hybrid'' viscosity, which is due
to the redirection of protons interacting with static magnetic field
perturbations, and to establish that it is the only relevant mechanism in this
situation. It has recently been shown by Balbus \cite{PBM1} and Islam & Balbus
\cite{PBM11} using a fluid approach that viscous momentum transport is key to
the development of the MRI in accretion disks for a wide range of parameters.
However, their results do not apply in hot, advection-dominated disks, which
are collisionless. We develop a fluid picture using the hybrid viscosity
mechanism, that applies in the collisionless limit. We demonstrate that viscous
effects arising from this mechanism can significantly enhance the growth of the
MRI as long as the plasma \beta \gapprox 80. Our results facilitate for the
first time a direct comparison between the MHD and quasi-kinetic treatments of
the magnetoviscous instability in hot, collisionless disks.Comment: To appear in the proceedings of the first Kodai-Trieste workshop on
Plasma Astrophysics (Aug 27-Sept 07 2007), Springer Astrophysics and Space
Science Proceedings serie