3 research outputs found

    Constructing a word similarity graph from vector based word representation for named entity recognition

    No full text
    In this paper, we discuss a method for identifying a seed word that would best represent a class of named entities in a graphical representation of words and their similarities. Word networks, or word graphs, are representations of vectorized text where nodes are the words encountered in a corpus, and the weighted edges incident on the nodes represent how similar the words are to each other. Word networks are then divided into communities using the Louvain Method for community detection, then betweenness centrality of each node in each community is computed. The most central node in each community represents the most ideal candidate for a seed word of a named entity group which represents the community. Our results from our bilingual data set show that words with similar lexical content, from either language, belong to the same community. Copyright © 2018 by SCITEPRESS - Science and Technology Publications, Lda. All rights reserve

    Challenges for Sustained Observing and Forecasting Systems in the Mediterranean Sea

    Get PDF
    The Mediterranean community represented in this paper is the result of more than 30 years of EU and nationally funded coordination, which has led to key contributions in science concepts and operational initiatives. Together with the establishment of operational services, the community has coordinated with universities, research centers, research infrastructures and private companies to implement advanced multi-platform and integrated observing and forecasting systems that facilitate the advancement of operational services, scientific achievements and mission-oriented innovation. Thus, the community can respond to societal challenges and stakeholders needs, developing a variety of fit-for-purpose services such as the Copernicus Marine Service. The combination of state-of-the-art observations and forecasting provides new opportunities for downstream services in response to the needs of the heavily populated Mediterranean coastal areas and to climate change. The challenge over the next decade is to sustain ocean observations within the research community, to monitor the variability at small scales, e.g., the mesoscale/submesoscale, to resolve the sub-basin/seasonal and inter-annual variability in the circulation, and thus establish the decadal variability, understand and correct the model-associated biases and to enhance model-data integration and ensemble forecasting for uncertainty estimation. Better knowledge and understanding of the level of Mediterranean variability will enable a subsequent evaluation of the impacts and mitigation of the effect of human activities and climate change on the biodiversity and the ecosystem, which will support environmental assessments and decisions. Further challenges include extending the science-based added-value products into societal relevant downstream services and engaging with communities to build initiatives that will contribute to the 2030 Agenda and more specifically to SDG14 and the UN's Decade of Ocean Science for sustainable development, by this contributing to bridge the science-policy gap. The Mediterranean observing and forecasting capacity was built on the basis of community best practices in monitoring and modeling, and can serve as a basis for the development of an integrated global ocean observing system
    corecore