6 research outputs found

    Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis

    Get PDF
    Correction: vol 7, 13205, 2016, doi:10.1038/ncomms13205Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in Bone-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h(2) = 0.18, P value = 0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.Peer reviewe

    Phenomenological theory of a charged polymer molecule in a nanosized gap between two fluidic reservoirs

    No full text
    We use a simple Born ion continuum model to analyse the effect of solvation energy change on the translocation of a charged linear polymer molecule through a nanosized vapor gap between two fluid reservoirs. As the effective radius of the discretely spaced charges increases, our model predicts a transition from trapping to diffusion of the molecule in the vapor gap. We discuss the applicability of our model to single-stranded DNA translocations in gaps, suggest experiments to validate our prediction and propose immediate applications of this new trapping mechanism for slowing down DNA motion for electronic DNA sequencing

    Fixed-Gap Tunnel Junction for Reading DNA Nucleotides

    No full text
    Previous measurements of the electronic conductance of DNA nucleotides or amino acids have used tunnel junctions in which the gap is mechanically adjusted, such as scanning tunneling microscopes or mechanically controllable break junctions. Fixed-junction devices have, at best, detected the passage of whole DNA molecules without yielding chemical information. Here, we report on a layered tunnel junction in which the tunnel gap is defined by a dielectric layer, deposited by atomic layer deposition. Reactive ion etching is used to drill a hole through the layers so that the tunnel junction can be exposed to molecules in solution. When the metal electrodes are functionalized with recognition molecules that capture DNA nucleotides <i>via</i> hydrogen bonds, the identities of the individual nucleotides are revealed by characteristic features of the fluctuating tunnel current associated with single-molecule binding events
    corecore