41 research outputs found

    UTJECAJ UMORA NA PRECIZNOST I KINEMATIČKE PARAMETRE ŠUTA U KOŠARCI

    Get PDF
    The main objective of this study was to establish whether fatigue has an effect on accuracy during basketball shooting. Aside from basketball shooting accuracy, two very important kinematic parameters were also examined as they have an effect on the level of accuracy during shooting: the speed of performing the actual shot and the angle at which the ball enters into the basket after a jump shot is performed. In conducting this research one examinee was observed, a member of the Croatian U16 National Basketball Team. This research included a precisely defined protocol according to which the following parameters were established: the accuracy of basketball shooting (ratio between successful and missed shots), the speed of performing the shot and the angle of entry of the ball into the basket. The physiological load was determined by performing the standardised specific protocol which the examinee performed until exhaustion. The results which were obtained indicate that there are no significant changes in the accuracy during one point, two point or three point shooting under the influence of physical fatigue. The obtained results of kinematic parameters indicate that there are statistically significant differences in the shooting speed before and after loading in two point and three point shots. During performing free throws the angle of entry of the ball into the basket changes, whereas the accuracy remains unchanged.Glavni cilj ovog istraživanja bio je utvrditi ima li umor utjecaj na preciznost šuta u košarci. Osim preciznosti takoðer su analizirana i dva vrlo važna kinematička parametra za koja su dosadašnja istraživanja utvrdila utjecaj na preciznost šuta: brzina izvoðenja samog šuta i kut pri kojem lopta ulazi u koš nakon skok šuta. U provedbi ovog istraživanja sudjelovao je jedan ispitanik, čan Hrvatske U16 košarkaške reprezentacije. Istraživanje ukljuèuje precizno definiran protokol prema kojem su uspostavljeni sljedeći parametri: preciznost šuta (omjer izmeðu uspješnih i neuspješnih šuteva), brzina izvedbe šuta i kut ulaska lopte u koš. Umor je izazvan izvoðenjem standardiziranog protokola fiziološkog opterećenja trčanjem koji ispitanik obavlja do iscrpljenosti. Dobiveni rezultati pokazuju da nema značajne promjene u preciznosti šuta za jedan, dva ili tri poena pod utjecajem tjelesnog umora. Dobiveni rezultati kinematičkih parametara pokazuju da postoje statistički značajne razlike u brzini šuta prije i poslije opterećenja pri šutu za dva i tri poena. Tijekom izvoðenja slobodnih bacanja kut ulaska lopte u koš se mijenja ali bez promjene preciznosti

    Stocktype effect on field performance of Austrian pine seedlings

    Get PDF
    Austrian pine (Pinus nigra Arnold) seedlings are one of the most produced planting material in Serbian nurseries. In this study we compared a field performance of two container stocktypes, one usually used (2+0 produced in Plantagrah I) and one recently introduced (1+0 produced in Hiko V120 SS). The trial was established at planting site Vlaško polje (East Serbia), at altitude of 840 m a.s.l., one year following the total destruction of previous pine plantation by ice. One-year-old Austrian pine seedlings produced in Hiko containers show similar initial height and root collar diameter at planting time as two-year-old seedlings produced in traditionally used Plantagrah I containers. There was no vegetation control at field trial during the first growing season. At the end of the first growing season, taller (15.6 cm) and more slender (H/D=4.5) 1+0 seedlings from Hiko containers survived at higher rate, and shorter (10.9 cm) and more stocky seedlings 2+0 produced in Plantagrah I grow in height at higher rate. Seedlings taller at the planting time kept their advantage in size after the first growing season at the field. We found that both stocktypes can be used in operational planting programs on sites with lack of vegetation control

    Coenzyme A and protein CoAlation levels are regulated in response to oxidative stress and during morphogenesis in Dictyostelium discoideum

    Get PDF
    Dictyostelium discoideum (D. discoideum) is a simple eukaryote with a unique life cycle in which it differentiates from unicellular amoebae into a fruiting body upon starvation. Reactive oxygen species (ROS) have been associated with bacterial predation, as well as regulatory events during D. discoideum development and differentiation. Coenzyme A (CoA) is a key metabolic integrator in all living cells. A novel function of CoA in redox regulation, mediated by covalent attachment of CoA to cellular proteins in response to oxidative or metabolic stress, has been recently discovered and termed protein CoAlation. In this study, we report that the level of CoA and protein CoAlation in D. discoideum are developmentally regulated, and correlate with the temporal expression pattern of genes implicated in CoA biosynthesis during morphogenesis. Furthermore, treatment of growing D. discoideum cells with oxidising agents results in a dose-dependent increase of protein CoAlation. However, much higher concentrations were required when compared to mammalian cells and bacteria. Increased resistance of D. discoideum to oxidative stress induced by H2O2 has previously been attributed to high levels of catalase activity. In support of this notion, we found that H2O2-induced protein CoAlation is significantly increased in CatA-deficient D. discoideum cells. Collectively, this study provides insights into the role of CoA and protein CoAlation in the maintenance of redox homeostasis in amoeba and during D. discoideum morphogenesis

    Changes in IgA-targeted microbiota following fecal transplantation for recurrent Clostridioides difficile infection

    Get PDF
    Secretory immunoglobulin A (IgA) interacts with intestinal microbiota and promotes mucosal homeostasis. IgA-bacteria interactions are altered during inflammatory diseases, but how these interactions are shaped by bacterial, host, and environmental factors remains unclear. In this study, we utilized IgA-SEQ to profile IgA-bound fecal bacteria in 48 recurrent Clostridioides difficile patients before and after successful fecal microbiota transplantation (FMT) to gain further insight. Prior to FMT, Escherichia coli was the most highly IgA-targeted taxon; following restoration of the microbiota by FMT, highly IgA-targeted taxa included multiple Firmicutes species. Post-FMT IgA-targeting was unaffected by the route of FMT delivery (colonoscopy versus capsule), suggesting that both methods lead to the establishment of healthy immune–bacterial interactions in the gut. Interestingly, IgA-targeting in FMT recipients closely resembled the IgA-targeting patterns of the donors, and fecal donor identity was significantly associated with IgA-targeting of the recipient microbiota. These data support the concept that intrinsic bacterial properties drive IgA recognition across genetically distinct human hosts. Together, this study suggests that IgA-bacterial interactions are reestablished in human FMT recipients to resemble that of the healthy fecal donor

    Systematic Evaluation of Normalization Methods for Glycomics Data Based on Performance of Network Inference

    Get PDF
    Glycomics measurements, like all other high-throughput technologies, are subject to technical variation due to fluctuations in the experimental conditions. The removal of this non-biological signal from the data is referred to as normalization. Contrary to other omics data types, a systematic evaluation of normalization options for glycomics data has not been published so far. In this paper, we assess the quality of different normalization strategies for glycomics data with an innovative approach. It has been shown previously that Gaussian Graphical Models (GGMs) inferred from glycomics data are able to identify enzymatic steps in the glycan synthesis pathways in a data-driven fashion. Based on this finding, here, we quantify the quality of a given normalization method according to how well a GGM inferred from the respective normalized data reconstructs known synthesis reactions in the glycosylation pathway. The method therefore exploits a biological measure of goodness. We analyzed 23 different normalization combinations applied to six large-scale glycomics cohorts across three experimental platforms: Liquid Chromatography – ElectroSpray Ionization-Mass Spectrometry (LC-ESI-MS), Ultra High Performance Liquid Chromatography with Fluorescence Detection (UHPLC-FLD), and Matrix Assisted Laser Desorption Ionization – Furier Transform Ion Cyclotron Resonance – Mass Spectrometry (MALDI-FTICR-MS). Based on our results, we recommend normalizing glycan data using the ‘Probabilistic Quotient’ method followed by log-transformation, irrespective of the measurement platform. This recommendation is further supported by an additional analysis, where we ranked normalization methods based on their statistical associations with age, a factor known to associate with glycomics measurements

    A Multi-Factorial Observational Study on Sequential Fecal Microbiota Transplant in Patients with Medically Refractory Clostridioides difficile Infection

    Get PDF
    Fecal microbiota transplantation (FMT) is highly effective in recurrent Clostridioides difficile infection (CDI); increasing evidence supports FMT in severe or fulminant Clostridioides difficile infection (SFCDI). However, the multifactorial mechanisms that underpin the efficacy of FMT are not fully understood. Systems biology approaches using high-throughput technologies may help with mechanistic dissection of host-microbial interactions. Here, we have undertaken a deep phenomics study on four adults receiving sequential FMT for SFCDI, in which we performed a longitudinal, integrative analysis of multiple host factors and intestinal microbiome changes. Stool samples were profiled for changes in gut microbiota and metabolites and blood samples for alterations in targeted epigenomic, metabonomic, glycomic, immune proteomic, immunophenotyping, immune functional assays, and T-cell receptor (TCR) repertoires, respectively. We characterised temporal trajectories in gut microbial and host immunometabolic data sets in three responders and one non-responder to sequential FMT. A total of 562 features were used for analysis, of which 78 features were identified, which differed between the responders and the non-responder. The observed dynamic phenotypic changes may potentially suggest immunosenescent signals in the non-responder and may help to underpin the mechanisms accompanying successful FMT, although our study is limited by a small sample size and significant heterogeneity in patient baseline characteristics. Our multi-omics integrative longitudinal analytical approach extends the knowledge regarding mechanisms of efficacy of FMT and highlights preliminary novel signatures, which should be validated in larger studies

    NIST interlaboratory study on glycosylation analysis of monoclonal antibodies : comparison of results from diverse analytical methods

    Get PDF
    Glycosylation is a topic of intense current interest in the development of biopharmaceuticals since it is related to drug safety and efficacy. This work describes results of an interlaboratory study on the glycosylation of the Primary Sample (PS) of NISTmAb, a monoclonal antibody reference material. Seventy‑six laboratories from industry, university, research, government, and hospital sectors in Europe, North America, Asia, and Australia submitted a total of 103 reports on glycan distributions. The principal objective of this study was to report and compare results for the full range of analytical methods presently used in the glycosylation  analysis of mAbs. Therefore, participation was unrestricted, with laboratories choosing their own measurement techniques. Protein glycosylation was determined in various ways, including at the level of intact mAb, protein fragments, glycopeptides, or released glycans, using a wide variety of methods for derivatization, separation, identification, and quantification. Consequently, the diversity of results was enormous, with the number of glycan compositions identified by each laboratory ranging from 4 to 48. In total, one hundred sixteen glycan compositions were reported, of which 57 compositions could be assigned consensus abundance values. These consensus medians provide community-derived values for NISTmAb PS. Agreement with the consensus medians did not depend on the specific method or laboratory type.. The study provides a view of the current state-of-the-art for biologic glycosylation measurement and suggests a clear need for harmonization of glycosylation analysis methods

    Covalent Aurora A regulation by the metabolic integrator coenzyme A

    Get PDF
    Aurora A kinase is a master mitotic regulator whose functions are controlled by several regulatory interactions and post-translational modifications. It is frequently dysregulated in cancer, making Aurora A inhibition a very attractive antitumor target. However, recently uncovered links between Aurora A, cellular metabolism and redox regulation are not well understood. In this study, we report a novel mechanism of Aurora A regulation in the cellular response to oxidative stress through CoAlation. A combination of biochemical, biophysical, crystallographic and cell biology approaches revealed a new and, to our knowledge, unique mode of Aurora A inhibition by CoA, involving selective binding of the ADP moiety of CoA to the ATP binding pocket and covalent modification of Cys290 in the activation loop by the thiol group of the pantetheine tail. We provide evidence that covalent CoA modification (CoAlation) of Aurora A is specific, and that it can be induced by oxidative stress in human cells. Oxidising agents, such as diamide, hydrogen peroxide and menadione were found to induce Thr 288 phosphorylation and DTT-dependent dimerization of Aurora A. Moreover, microinjection of CoA into fertilized mouse embryos disrupts bipolar spindle formation and the alignment of chromosomes, consistent with Aurora A inhibition. Altogether, our data reveal CoA as a new, rather selective, inhibitor of Aurora A, which locks this kinase in an inactive state via a “dual anchor” mechanism of inhibition that might also operate in cellular response to oxidative stress. Finally and most importantly, we believe that these novel findings provide a new rationale for developing effective and irreversible inhibitors of Aurora A, and perhaps other protein kinases containing appropriately conserved Cys residues

    Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin g glycome

    Get PDF
    BACKGROUND: Glycobiology is an underexplored research area in inflammatory bowel disease (IBD), and glycans are relevant to many etiological mechanisms described in IBD. Alterations in N-glycans attached to the immunoglobulin G (IgG) Fc fragment can affect molecular structure and immunological function. Recent genome-wide association studies reveal pleiotropy between IBD and IgG glycosylation. This study aims to explore IgG glycan changes in ulcerative colitis (UC) and Crohn's disease (CD). METHODS: IgG glycome composition in patients with UC (n = 507), CD (n = 287), and controls (n = 320) was analyzed by ultra performance liquid chromatography. RESULTS: Statistically significant differences in IgG glycome composition between patients with UC or CD, compared with controls, were observed. Both UC and CD were associated with significantly decreased IgG galactosylation (digalactosylation, UC: odds ratio [OR] = 0.71; 95% confidence interval [CI], 0.5–0.9; P = 0.01; CD: OR = 0.41; CI, 0.3–0.6; P = 1.4 × 10(−9)) and significant decrease in the proportion of sialylated structures in CD (OR = 0.46, CI, 0.3–0.6, P = 8.4 × 10(−8)). Logistic regression models incorporating measured IgG glycan traits were able to distinguish UC and CD from controls (UC: P = 2.13 × 10(−6) and CD: P = 2.20 × 10(−16)), with receiver–operator characteristic curves demonstrating better performance of the CD model (area under curve [AUC] = 0.77) over the UC model (AUC = 0.72) (P = 0.026). The ratio of the presence to absence of bisecting GlcNAc in monogalactosylated structures was increased in patients with UC undergoing colectomy compared with no colectomy (FDR-adjusted, P = 0.05). CONCLUSIONS: The observed differences indicate significantly increased inflammatory potential of IgG in IBD. Changes in IgG glycosylation may contribute to IBD pathogenesis and could alter monoclonal antibody therapeutic efficacy. IgG glycan profiles have translational potential as IBD biomarkers
    corecore