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ORIGINAL ARTICLE

Inflammatory Bowel Disease Associates with Proinflammatory
Potential of the Immunoglobulin G Glycome
Irena Trbojevi�c Akma�ci�c, MSc,* Nicholas T. Ventham, MBBS,† Evropi Theodoratou, PhD,‡

Frano Vu�ckovi�c, MSc,* Nicholas A. Kennedy, MBBS,† Jasminka Kri�sti�c, MSc,* Elaine R. Nimmo, PhD,†

Rahul Kalla, MBChB,† Hazel Drummond, BSc,† Jerko �Stambuk, MSc,* Malcolm G. Dunlop, MD,§

Mislav Novokmet, PhD,* Yurii Aulchenko, PhD,k,¶ Olga Gornik, PhD,** IBD-BIOM Consortium,
Harry Campbell, MD,‡ Maja Pu�ci�c Bakovi�c,* Jack Satsangi, DPhil,† and Gordan Lauc, PhD*,**

Background: Glycobiology is an underexplored research area in inflammatory bowel disease (IBD), and glycans are relevant to many etiological
mechanisms described in IBD. Alterations in N-glycans attached to the immunoglobulin G (IgG) Fc fragment can affect molecular structure and
immunological function. Recent genome-wide association studies reveal pleiotropy between IBD and IgG glycosylation. This study aims to explore
IgG glycan changes in ulcerative colitis (UC) and Crohn’s disease (CD).

Methods: IgG glycome composition in patients with UC (n ¼ 507), CD (n ¼ 287), and controls (n ¼ 320) was analyzed by ultra performance liquid
chromatography.

Results: Statistically significant differences in IgG glycome composition between patients with UC or CD, compared with controls, were observed.
Both UC and CD were associated with significantly decreased IgG galactosylation (digalactosylation, UC: odds ratio [OR] ¼ 0.71; 95% confidence
interval [CI], 0.5–0.9; P ¼ 0.01; CD: OR ¼ 0.41; CI, 0.3–0.6; P ¼ 1.4 · 1029) and significant decrease in the proportion of sialylated structures in CD
(OR ¼ 0.46, CI, 0.3–0.6, P ¼ 8.4 · 1028). Logistic regression models incorporating measured IgG glycan traits were able to distinguish UC and CD
from controls (UC: P ¼ 2.13 · 1026 and CD: P ¼ 2.20 · 10216), with receiver–operator characteristic curves demonstrating better performance of the
CD model (area under curve [AUC] ¼ 0.77) over the UC model (AUC ¼ 0.72) (P ¼ 0.026). The ratio of the presence to absence of bisecting GlcNAc in
monogalactosylated structures was increased in patients with UC undergoing colectomy compared with no colectomy (FDR-adjusted, P ¼ 0.05).

Conclusions: The observed differences indicate significantly increased inflammatory potential of IgG in IBD. Changes in IgG glycosylation may
contribute to IBD pathogenesis and could alter monoclonal antibody therapeutic efficacy. IgG glycan profiles have translational potential as IBD biomarkers.

(Inflamm Bowel Dis 2015;21:1237–1247)
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T he inflammatory bowel diseases (IBD), Crohn’s disease (CD)
and ulcerative colitis (UC), are a cause of considerable mor-

bidity among young people. The incidence of IBD is increasing,1

and IBD has an estimated prevalence of 2.5 to 3 million in Eu-
rope.2,3 IBD has a considerable economic burden with direct costs
of €4.6 to 5.2 billion in Europe per year.2

IBD is believed to be caused by an aberrant immune
response to gut microbiota in genetically susceptible individuals.4

Although great progress has been made in understanding the
genetic architecture of IBD,5–8 only a limited proportion of heri-
tability can be explained by genetics alone. Thus, determining the
environmental priming and triggering factors of IBD is a research
imperative. Glycobiology is an underexplored scientific area in
the context of IBD. The 3 proposed pathogenic mechanisms of
IBD: genetics, gut microbiota, and aberrant immune response may
all be affected by or result in alterations in glycans.9

Glycans are complex carbohydrates conjugated to proteins
(to form glycoproteins) by the activity of hundreds of enzymes
organized into complex pathways.10,11 Glycan moieties are not
synthesized using a direct genetic template, and final glycan struc-
ture and glycome composition are determined by changes in con-
centrations, expression, and activity of the enzymes involved in
glycan biosynthesis. Both inherited (genetic) and acquired (envi-
ronmental) factors modulate glycosylation, and differential glycan
structure and expression levels have been described in many dis-
eases.12,13 The complexity of glycans, given the nonlinear
branched topology and differing interresidue linkages, potentially
explains why this research field has lagged behind that of ge-
nomics and proteomics.10

In the colon, the dual mucus layer formed of O-linked
glycosylated mucins, notably the glycan acceptor protein
MUC2, has been extensively described, and a structurally and
functionally deficient mucus layer is likely to contribute signifi-
cantly to the pathogenesis of colitis.14–17 The role of N-linked
glycosylation of serum proteins in IBD has been less well
described. A recent publication has reinvigorated interest in this
field by profiling the whole serum N-glycome in patients with
UC.18 Miyahara et al18 demonstrated a higher expression of
N-glycans in patients with UC compared with controls, more
specifically highly sialylated multibranched glycans and agalacto-
syl biantennary glycans, which have also been implicated in
rheumatoid arthritis and diabetes.

A number of genetic studies compel studying the relation-
ship between IBD and glycosylation of immunoglobulins.
Immunoglobulin G (IgG) is the most abundant of circulating
antibodies and acts against pathogens in the acquired immune
system. A recent study by members of this consortium demon-
strated large individual variability in IgG glycosylation.19 The IgG
glycome composition was up to 80% heritable, with the involve-
ment of numerous genetic and epigenetic loci.20 A recent genome-
wide association study discovered 9 loci significantly associated
with IgG glycosylation, several of which are also complex
immune diseases susceptibility loci.21 Particularly noticeable is
the pleiotropy with IBD as 5 of 16 IgG glycome genome-wide

association study associations (attaining significance threshold of
P ¼ 5 · 1028) occurred in known IBD loci (IKZF1, LAMB1,
MGAT3, IL6ST, and BACH2), indicating that IgG glycosylation
may be an important factor in the development and course of
IBD.5,8,21

IgG carries N-linked glycans at a single location on the Cg2
domain of its Fc fragment. Despite having a single N-glycan
attachment site, more than 900 IgG glycoforms are theoretically
possible.22 Functionally, minute changes in glycan composition
can significantly change the structural conformation of the Fc
region with dramatic consequences for IgG effector functions.23,24

IgG can demonstrate both pro- and anti-inflammatory activity
depending on its glycosylation status. Sialylation of IgG converts
IgG from a proinflammatory to an anti-inflammatory molecule.25

Dynamic changes to the efficacy of IgG-mediated antibody-
dependent cellular toxicity (ADCC) occur with changes in core
fucosylation of IgG, with ADCC 100 times more likely to occur
in IgG lacking a core fucose. Core fucosylation is present in 95%
of circulating IgG molecules and may limit inappropriate and
potentially destructive ADCC.19,26

To examine the potential role of individual variation in IgG
glycosylation on IBD, we performed detailed characterization of
IgG glycome composition in 507 patients with UC, 287 patients
with CD, and 320 healthy controls.

MATERIALS AND METHODS

Clinical Samples and Ethical Considerations

IBD Cases
Patients with IBD were recruited in Edinburgh (Western

General Hospital) and Dundee (Ninewells Hospital) in South East
Scotland between 2001 and 2012. The appropriate ethical
approvals were obtained before sample collection (Dundee Ethics
[Tayside Ethics committee 226/02], Edinburgh Ethics [Lothian
Ethics committee 2000/4/192, South East Scotland SAHSC
Annotated BioResource 10/S1402/33]), and written informed
consent was obtained from all participants. A clinical, radiolog-
ical, endoscopic, and histopathological diagnosis of IBD was
made according to Lennard-Jones27 criteria. Disease location and
behavior was classified according to the Montreal-classification.28

The following outcome data were collected for UC: colectomy,
colectomy reason (acute, chronic, and dysplasia), and time from
diagnosis to colectomy; and for CD: biologic requirement, sur-
gery, time from diagnosis to first surgery, and number of surger-
ies. Follow-up time was censored at the date of colectomy (or
surgery) or on January 31, 2013, for participants who were not
known to have had colectomy (or surgery).

Control Samples
Control samples used in the main analysis consisted of

symptomatic patients with no discernable pathology after inves-
tigations (including colonoscopy) (n ¼ 119) and a set of healthy
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volunteers recruited through the Study of Colorectal Cancer in
Scotland (n ¼ 201).29 Both sets of controls were drawn from the
same geographical area and were recruited during the same time
period (Multicenter Ethics Committee for Scotland MREC/01/0/5).

Analysis of IgG Glycans

Isolation of IgG from Human Serum
The IgG was isolated using protein G monolithic plates

(BIA Separations, Ajdov�s�cina, Slovenia) as described previ-
ously.19 Briefly, 50 to 90 mL of serum was diluted 7· with 1·
PBS, pH 7.4, applied to the protein G plate and instantly washed
with 1· PBS, pH 7.4, to remove unbound proteins. IgG was
eluted with 1 mL of 0.1 M formic acid (Merck, Darmstadt, Ger-
many) and neutralized with 1 M ammonium bicarbonate (Merck).

Glycan Release and Labeling
Half of each IgG sample (350–400 mg) was dried in a vac-

uum concentrator and denatured with addition of 30 mL 1.33%
SDS (wt/vol) (Invitrogen, Carlsbad, CA) and by incubation at
658C for 10 minutes. Subsequently, 10 mL of 4% Igepal-CA630
(vol/vol) (Sigma-Aldrich, St. Louis, MO) and 1.25 mU of
PNGase F (ProZyme, Hayward, CA) in 10 mL 5· PBS were
added. The samples were incubated overnight at 378C for
N-glycan release. The released N-glycans were labeled with
2-aminobenzamide (2-AB). The labeling mixture was freshly pre-
pared by dissolving 2-AB (19.2 mg/mL; Sigma-Aldrich) and
2-picoline borane (44.8 mg/mL; Sigma-Aldrich) in DMSO
(Sigma-Aldrich) and glacial acetic acid (Merck) mixture (70:30,
vol/vol). A total of 25 mL of labeling mixture was added to each
N-glycan sample in the 96-well plate, and the plate was sealed
using adhesive seal. Mixing was achieved by shaking for 10 mi-
nutes, followed by 2 hours incubation at 658C. Samples (in a vol-
ume of 75 mL) were brought to 80% ACN (vol/vol) by adding
300 mL of ACN (J. T. Baker, Phillipsburg, NJ). Free label and
reducing agent were removed from the samples using HILIC-
SPE. A total of 200 mL of 0.1 g/mL suspension of microcrystal-
line cellulose (Merck) in water was applied to each well of a 0.45-
mm GHP filter plate (Pall Corporation, Ann Arbor, MI). Solvent
was removed by application of vacuum using a vacuum manifold
(Millipore Corporation, Billerica, MA). All wells were prewashed
using 5· 200 mL water, followed by equilibration using 3· 200
mL acetonitrile/water (80:20, vol/vol). The samples were loaded
to the wells. The wells were subsequently washed 7· using 200
mL acetonitrile/water (80:20, vol/vol). Glycans were eluted 2·
with 100 mL of water and combined eluates were stored at
2208C until usage.

Hydrophilic Interaction Chromatography
(HILIC)–Ultra Performance Liquid Chromatography

Fluorescently labeled N-glycans were separated by hydro-
philic interaction chromatography on a Waters Acquity ultra
performance liquid chromatography (UPLC) instrument (Milford,
MA) consisting of a quaternary solvent manager, sample

manager, and an FLR fluorescence detector set with excitation
and emission wavelengths of 250 and 428 nm, respectively.
The instrument was under the control of Empower 2 software,
build 2145 (Waters). Labeled N-glycans were separated on
a Waters bridged ethylene hybrid, glycan chromatography col-
umn, 100 · 2.1 mm internal diameter, 1.7-mm bridged ethylene
hybrid particles, with 100 mM ammonium formate, pH 4.4, as
solvent A and acetonitrile as solvent B. The separation method
used a linear gradient of 75% to 62% acetonitrile (vol/vol) at flow
rate of 0.4 mL/min in a 25-minute analytical run. Samples were
maintained at 58C before injection, and the separation temperature
was 608C. The system was calibrated using an external standard
of hydrolyzed and 2-AB labeled glucose oligomers from which
the retention times for the individual glycans were converted to
glucose units. Data processing was performed using an automatic
processing method with a traditional integration algorithm after
which each chromatogram was manually corrected to maintain the
same intervals of integration for all the samples. The chromato-
grams were all separated in the same manner into 24 peaks, and
the amount of glycans in each peak was expressed as % of total
integrated area.

Statistical Analysis
Clinical characteristics among the 3 groups (UC patients,

CD patients, and healthy controls) were compared using Wilcox-
on (for continuous outcomes) and exact tests (for categorical
variables).

To remove experimental variation from measurements,
normalization and batch correction were performed on UPLC
glycan data. Total area normalization was applied, where peak
area of each of the 24 glycan structures was divided by the total
area of the corresponding chromatogram, resulting in normalized
traits being expressed as proportions (in percentages) of specific
glycan among total measured glycans. Before batch correction,
normalized glycan measurements were log-transformed because
of right-skewness of their distributions and the multiplicative
nature of the batch effects. For each glycan group independently,
batch correction was performed on log-transformed measurements
using linear mixed models (R package lme430). In the model, the
batch membership (which sample was analyzed on which plate)
was described as a random effect. To get measurements corrected
for experimental noise, estimated batch effects were subtracted
from log-transformed measurements.

High-throughput glycomics analysis techniques are cur-
rently relatively novel, thus additional care is needed to avoid
false interpretation of results. Because of the chemical nature of
glycans, glycan analysis is sensitive to slight variations in
collection and analysis of samples. As patient and control samples
originated from several centers, before comparing cases with
controls, we first had to establish which glycans are robust
regarding slight experimental variation in sample collection and
time period of measurements. Two quality control metrics were
used (on normalized, batch-corrected glycan measurements) for
the selection, and both had to be satisfied for a glycan to be
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selected for the further analysis. First, only the most abundant
glycan structures (average abundance above 2% of the glycome)
were considered for the analysis, as they generally show greater
robustness compared with less abundant glycans.31 Then, using
Wilcoxon test, we compared 2 separately recruited parts of the
control cohort and only glycans for which there were no statistically
significant differences between the 2 subgroups of the control cohort
(corrected for age) were used for comparison with IBD cases.

Eight glycan peaks passed both quality checks: GP4, GP6,
GP8, GP9, GP10, GP14, GP18, and GP19. In addition to these 8
directly measured glycan structures, 15 derived traits were
calculated from the directly measured glycans (see Table,
Supplemental Digital Content 1, http://links.lww.com/IBD/
A791). As derived traits represent ratios and sums of initial gly-
cans, they were calculated using normalized and batch-corrected
glycan measurements after transformation to the proportions
(exponential of batch-corrected measurements).

Association analyses between disease status and glycotraits
were performed using a logistic regression model with age, sex, and
IBD cohort included as additional covariates. As a result of the large
number of glycotraits investigated, the analysis was performed by
including 1 glycotrait at a time in the model. We also performed an
intracase analysis where we examined the associations between the
percentage of each specific glycotrait and need for colectomy
(patients with UC) or surgery (patients with CD) using a Cox
proportional hazards model adjusted for age (when sample was
taken), gender, and IBD cohort and accounting for follow-up time
(time between diagnosis and colectomy or first surgery). Before
logistic and Cox regression analysis, glycan variables were all
transformed to standard Normal distribution by inverse trans-
formation of ranks to Normality (R package “GenABEL,”32 func-
tion rntransform). Using predictors, which are transformed to
standard Normal, in logistic and Cox regression analysis makes
estimated odds and hazard ratios of different glycans comparable,
where the estimated odds or hazards ratio always corresponds to 1
SD change in the measured glycan trait. To evaluate the difference
in changes in CD, compared with patients with UC, we defined the
magnitude of change in a glycan as an absolute value of logarithm
of odds ratio, which were then tested using Wilcoxon paired test.
False discovery rate for both the logistic regression and Cox
proportional hazards analyses was controlled using Benjamini–
Hochberg procedure.33

To classify patients with UC and CD, a logistic regression
model was applied. Only the selected measured glycans—GP4,
GP6, GP8, GP9, GP10, GP14, GP18, and GP19—were used in
the classification analysis. Before model training, measurements
of initial glycans were adjusted for age (through residuals). To
evaluate the performance of the discriminatory model, the leave-
one-out cross-validation (LOOCV) procedure was used. In the
LOOCV procedure, each partitioning of the data is done in
a way that the validation set contains only 1 sample, whereas
the predictive model is trained on all remaining samples. In each
round of cross-validation, the full model (a model that contains all
8 initial glycans) was fitted into the training set. To remove from

the model those glycan variables that do not statistically signifi-
cantly improve classification performance, variable selection was
performed using the backward stepwise elimination procedure.
The optimal model was determined using the Akaike information
criterion,34 where the best model is defined as one with the lowest
Akaike information criterion score among all tested models (R
package “stats”35; function step; () with equivalent degrees of
freedom ¼ 2, which corresponds to the traditional Akaike infor-
mation criterion). At the end of each LOOCV round, the optimal
model was used for discrimination on a single sample validation
set. Predictions made in each LOOCV round were pooled in 1 set,
and the performance of the discriminatory model was evaluated
on a pooled validation set based on accuracy criteria (threshold ¼
0.5) and area under the receiver operating characteristic curve
criteria.36 Differences in glycomes between patients and controls
were visualized using principal component analysis. Principal
component analysis was applied only on glycan variables that
were selected by backward elimination procedure: GP4, GP8,
GP9, GP14, and GP18 in HC/UC model and GP4, GP6, GP9,
and GP14 in HC/CD model. The area under the receiver operating
characteristic curve of the 2 classification models (HC/UC and
HC/CD) were compared using the bootstrap test.

Data were analyzed using R (version 3.0.1) and STATA
(version 12.0).

RESULTS
Using the recently developed and thoroughly validated

quantitative method for IgG glycosylation profiling, we have
analyzed the composition of the IgG glycome in 507 patients
with UC, 287 patients with CD, and 320 healthy controls. The
distribution of current, non-, and ex-smokers was different
between the patients with UC and controls and patients with
CD (both P , 0.001), with the difference mostly coming from
the proportion of current smokers. In other parameters, there
were no significant differences between the control and UC/
CD groups (Table 1). Further detailed phenotypic information
regarding IBD cases is listed in Table, Supplemental Digital
Content 2, http://links.lww.com/IBD/A792. Chromatographic
analysis separated the glycome in 24 chromatographic peaks
(GP1–GP24), the majority of which represented a single
glycan structure (Fig. 1). Eight of these structures, together
with 15 additional derived traits were included in the current
analysis.

Statistically significant differences were observed in a num-
ber of glycan traits as estimated in logistic regression analysis
(Table 2, Fig. 2, and see Fig., Supplemental Digital Content 3,
http://links.lww.com/IBD/A793). We have successfully replicated
a significant decrease in IgG galactosylation reported in 2 pre-
vious studies (GP14 and G2N).18,37 Thanks to a much larger
cohort and improved analytical technology, we were also able
to observe a decrease in monogalactosylated IgG glycans
(GP9), which has not been reported previously. Another novel
observation is the significant decrease in sialylation of bigalacto-
sylated IgG glycans in CD (GP18 and S total). In CD, there was
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also an increase in glycans with bisecting GlcNAc (B total) com-
pared with controls. The pattern of glycosylation changes was
very similar between UC and CD. For all glycans that were sta-
tistically significantly different between cases and controls, the
intensity of change was consistently higher in CD than in UC
(P ¼ 5 · 1024, Table 2).

Correlation of Glycans with
Clinical Phenotype

In total, 507 patients with UC included in the Cox
regression analysis were followed up for 7090 person-years. Fifty
two patients had a colectomy, and median follow-up was 11.1
years (interquartile range: 5.9–20.1 years). Glycan peak
FA2BG2S1/FA2G2S1 was marginally significantly (false discov-
ery rate p value ¼ 0.05) increased in patients with UC undergoing
colectomy compared with no colectomy (see Table, Supplemental
Digital Content 4, http://links.lww.com/IBD/A794).

The 287 patients with CD included in the Cox regression
analysis were followed up in total for 2628 person-years. Eighty-four
patients had a surgery, and median follow-up was 6.9 years
(interquartile range: 2.0–13.1 years). No glycan peaks were

statistically significantly different in those with CD undergoing sur-
gery compared with no surgery (see Table, Supplemental Digital
Content 4, http://links.lww.com/IBD/A794).

Discrimination of Disease Status
Given the strong association of certain glycan traits with

both UC and CD, we attempted to build discriminatory models for
both diseases using logistic regression. To evaluate the discrim-
inatory performance of the model based on glycan measurements,
LOOCV procedure was used. Predictions from each LOOCV
round were pooled in 1 set, and predictive model was evaluated
on pooled set of predictions. For both models, a statistically
significant discrimination power was observed (UC: P ¼ 2 ·
1026; CD: P , 2 · 10216; Table 3; Fig. 3A, B). A similar subset
of glycan variables was selected as relevant features for disease
discrimination for both the UC and CD models. In particular,
GP4 (FA2), GP8 (FA2[6]G1), GP9 (FA2[3]G1), GP14 (FA2G2),
and GP18 (FA2G2S1) were selected as informative variables for the
UC discriminatory model, whereas GP4 (FA2), GP6 (FA2B), GP9
(FA2[3]G1), and GP14 (FA2G2) were chosen for the CD discrim-
inatory model. Differences between patients and controls in the set

TABLE 1. Demographics of Included Patients and Controls

Healthy Controls CD UC

P (CD Versus HC) P (UC Versus HC) P (CD Versus UC)n ¼ 320 n ¼ 287 n ¼ 507

Age, median [IQR], yr 46 (39–51) 42 (29–56) 45 (34–59) 0.05 0.54 0.006

Number of females (%) 175 (54.7) 183 (63.8) 292 (57.6) 0.03 0.47 0.01

Median age at diagnosis (IQR) — 27 (21–49) 34 (25–47) — — 1.11 · 1028

Smoking status at diagnosis (%)

Current 53 (16.6) 87 (30.3) 48 (9.4) 0.01 2.05 · 1025 7.92 · 10214

Ex-smoker 73 (22.8) 67 (23.3) 200 (39.3)

Never smoked 142 (44.4) 128 (44.6) 253 (49.9)

Unknown 52 (16.3) 5 (1.7) 6 (1.2)

Ethnicity (%)

White 309 (96.6) 282 (98.3) 487 (96.1) 0.5 0.15 0.03

Non-white 6 (1.9) 3 (1) 19 (3.7)
Unknown 5 (1.6) 2 (0.7) 1 (0.2)

Family history of IBD (%)

Yes 0 50 (17.4) 95 (18.7) — — 0.847

No 115 (35.9) 224 (78) 402 (79.3)

Unknown 205 (64) 13 (4.5) 10 (2)

Immunomodulator treatment (%)

Yes — 199 (69.3) 184 (36.2) — — 0.027

No 31 (10.8) 50 (9.9)
Unknown 57 (19.9) 273 (53.8)

Anti-TNFa or ciclosporin
treatment (%)

Yes — 67 (23.3) 32 (6.3) — — 8.61 · 10212

No 205 (71.4) 448 (88.4)

Unknown 15 (5.2) 27 (5.3)
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of glycans that were used in the final discriminatory models were
visualized using principal component analysis (Fig. 3C, D). Finally,
analysis of ROC curves showed a superior performance of the CD
discriminatory model over the UC model (CD: AUC ¼ 0.77; UC:
AUC ¼ 0.72; P ¼ 0.026). This is in accordance with the results
from the initial logistic regression analysis (Table 2), where the
magnitude of change in glycan composition was larger for patients
with CD compared with UC (P ¼ 5 · 1024).

DISCUSSION
This study used UPLC to determine differences in IgG

glycome composition between patients with IBD and controls.
There was significantly decreased galactosylation in patients with
CD and UC compared with controls. CD was associated with
significantly decreased sialylation and increased bisecting
GlcNAc on digalactosylated IgG glycans. The observed differ-
ences may have some functional relevance for IBD because
alterations of IgG have significant consequences on both IgG
effector functions12,38 and the immune system in general.39

IgG glycosylation was first associated with IBD in 2008
when a study on 58 patients with UC and 60 patients with CD
reported significantly decreased galactosylation in both diseases.37

A subsequent study performed in 2013, on 75 patients with UC
also confirmed decreased galactosylation of IgG in UC.18 Here,
we successfully replicate the findings of the 2 aforementioned
studies in a larger cohort with greater statistical power.

Furthermore, for the first time, we have demonstrated that mo-
nogalactosylated structures are decreased in both UC and CD.

Decreased IgG galactosylation can lead to a more proin-
flammatory antibody response.12 This change in IgG galactosyla-
tion has been reported in a number of inflammatory diseases13 but
importantly also occurs with aging in the general population.20 It
can be postulated that the observed inflammatory IgG glycoforms
are a consequence of inflammation rather than a cause of IBD.
However, in rheumatoid arthritis, decreased galactosylation has
been demonstrated to predate the onset of arthritis.40,41 Thus,
individual genetically predetermined differences in capacity to
galactosylate IgG may be a predisposing factor for the develop-
ment of IBD and other inflammatory diseases.42

IL6ST (IL-6 signal transducer or GP130) and BACH2 have
been identified as IBD susceptibility loci in genome-wide associ-
ation study studies5,8 and are both associated with IgG galactosy-
lation.21 This may provide a potential molecular mechanism
linking IL6ST and BACH2 polymorphisms with the aberrant
IgG galactosylation with IBD demonstrated here. Additionally,
IL-6 has been implicated in the pathogenesis of several
immune-mediated diseases and tocilizumab, a monoclonal anti-
body directed against the IL-6 receptor has been developed to
treat different inflammatory diseases.43 A recent study on patients
with rheumatoid arthritis treated with tocilizumab revealed signif-
icantly increased IgG galactosylation, providing further evidence
that changes in galactosylation are functionally important.44

FIGURE 1. UPLC analysis of IgG glycosylation. Each IgG contains 1 conserved N-glycosylation site on Asn297 of its heavy chain. Different glycans
can be attached to this site, and the process seems to be highly regulated. UPLC analysis can reveal composition of the glycome attached to
a population of IgG molecules by separating total IgG N-glycome into 24 chromatographic glycan peaks (GP1–GP24), mostly corresponding to
individual glycan structures.
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Because of technical limitations, previous studies of IgG
glycosylation in IBD did not include other elements of IgG
glycosylation such as sialylation, bisecting GlcNAc, and core
fucose.18,37 In this study, sialylation was significantly decreased in
patients with CD (Figs. 2 and 3, Table 2). Given sialylation is

dependent, at least in part, on galactosylation, observed changes
in sialylation may be driven by the known decrease in galactosy-
lation seen in IBD.

Sialylation on IgG also results in an anti-inflammatory IgG
phenotype.12 Mechanisms include a reduction of the affinity of

TABLE 2. Odds Ratios (OR), 95% Confidence Intervals (95% CI) and P Values for the Associations of the
Normalized Glycan Variables (Adjusted for Age, Gender and IBD Cohort)

Glycan*

UC CD

OR (95% CI) P q OR (95% CI) P q

Initial measurements GP4 1.59 (1.25–2.04) 0.0001 0.0003 2.51 (1.85–3.5) 2.0 · 10210 2.8 · 1029

GP6 1.44 (1.11–1.88) 0.01 0.01 2.95 (2.06–4.37) 2.4 · 10210 2.8 · 1029

GP8 0.82 (0.66–1.02) 0.07 0.09 0.84 (0.65–1.08) 0.18 0.20

GP9 0.58 (0.46–0.72) 8.4 · 1027 2.6 · 1026 0.69 (0.53–0.87) 0.002 0.005

GP10 0.83 (0.66–1.04) 0.10 0.12 1.13 (0.87–1.47) 0.35 0.36

GP14 0.71 (0.54–0.91) 0.01 0.01 0.41 (0.29–0.56) 1.4 · 1029 9.1 · 1029

GP18 0.77 (0.6–0.99) 0.04 0.05 0.49 (0.36–0.66) 7.3 · 1027 2.6 · 1026

GP19 1.12 (0.91–1.37) 0.30 0.32 0.62 (0.48–0.8) 0.0002 0.0004

Neutral IgG glycans GP4n 1.63 (1.28–2.09) 0.0001 0.0001 2.49 (1.84–3.49) 2.4 · 10210 2.8 · 1029

Neutral IgG glycans GP6n 1.42 (1.09–1.85) 0.01 0.02 2.58 (1.82–3.75) 1.6 · 1028 9.3 · 1028

Neutral IgG glycans GP8n 0.74 (0.59–0.93) 0.01 0.02 0.58 (0.44–0.76) 5.7 · 1025 0.0001

Neutral IgG glycans GP9n 0.54 (0.43–0.67) 2.9 · 1028 1.3 · 1027 0.54 (0.41–0.7) 8.4 · 1027 2.6 · 1026

Neutral IgG glycans GP10n 0.81 (0.64–1.01) 0.06 0.08 0.96 (0.74–1.24) 0.74 0.74

Neutral IgG glycans GP14n 0.72 (0.55–0.92) 0.01 0.02 0.39 (0.28–0.54) 3.7 · 10210 2.8 · 1029

Proportion of sialylated structures
in total IgG glycans

S total 0.8 (0.63–1.02) 0.07 0.09 0.46 (0.34–0.62) 8.4 · 1028 3.2 · 1027

Proportion of structures with
bisecting GlcNAc in total IgG
glycans

B total 1.19 (0.93–1.53) 0.17 0.20 1.74 (1.28–2.39) 0.0003 0.0006

Proportion of agalactosylated
structures in neutral glycans

G0n 1.67 (1.3–2.17) 3.8 · 1025 0.0001 2.82 (2.03–4.05) 8.9 · 10212 4.1 · 10210

Proportion of monogalactosylated
structures in neutral glycans

G1n 0.52 (0.4–0.66) 2.8 · 1028 1.3 · 1027 0.46 (0.34–0.62) 4.4 · 1028 1.8 · 1027

Proportion of digalactosylated
structures in neutral glycans

G2n 0.72 (0.55–0.92) 0.01 0.02 0.39 (0.28–0.54) 3.7 · 10210 2.8 · 1029

Ratio of the presence to absence of
bisecting GlcNAc in
agalactosylated structures

FA2B/FA2 1.23 (0.99–1.52) 0.06 0.08 1.21 (0.94–1.56) 0.14 0.16

Ratio of the presence to absence of
bisecting GlcNAc in
monogalactosylated structures

FA2BG1/FA2G1 0.92 (0.73–1.17) 0.51 0.52 1.18 (0.9–1.56) 0.23 0.25

Ratio of the presence to absence of
bisecting GlcNAc in
monosialylated digalactosylated
structures

FA2BG2S1/FA2G2S1 1.29 (1.02–1.62) 0.03 0.05 1.33 (1.02–1.74) 0.04 0.05

Ratio of monosialylated
digalactosylated structures to
digalactosylated structures
without sialylation

FA2G2S1/FA2G2 1.21 (0.98–1.5) 0.07 0.09 1.33 (1.05–1.7) 0.02 0.03

Derived glycan structures are presented as the extension of the minimal core consisting of 2 GlcNAcs and 3 manoses with “G” representing glucose, “S” sialic acid, “F” core fucose, and
“B” bisecting GlcNAc.
n, derived traits calculated from the subset of neutral glycans.
*Directly Measured glycan peaks (GP1–GP24) are shown in Figure 1.
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IgG to bind to activated FcgRs45 and promotion of recognition by
DC-SIGN, which leads to increased expression of inhibitory
FcgRIIB with consequent anti-inflammatory actions.45 Sialylated
IgG glycans are believed to be the active fraction that harbors the
anti-inflammatory potential of intravenous immunoglobulins
(IVIg). Therefore, through both decreased galactosylation and
decreased sialylation, IgG in patients with IBD has significantly

greater proinflammatory properties than in healthy controls. In
this study, we found this change to be more pronounced in CD
compared with UC.

IVIg therapy is used to suppress inflammation in a number of
diseases.39 Although the therapeutic use of IVIg has been suggested
in CD, its use in IBD is not routine.46 The glycome composition we
observed in patients with IBD (more pronounced in CD than in

FIGURE 2. The distribution of IgG glycans in patients with UC and CD and healthy controls (HC). A, Directly measured glycan structures; B, Derived
traits that measure sialylation and bisecting GlcNAc; C, Derived traits that measure galactosylation. Full set of glycans is available in Fig., Sup-
plemental Digital Content 3, http://links.lww.com/IBD/A793.

TABLE 3. Performance Characteristics of the Logistic Regression Models Used to Discriminate Patients with UC
and CD from Healthy Controls

Model AUC Number of Cases Accuracy (95% CI) Sensitivity Specificity P

UC 0.721 61 0.690 (0.657–0.722) 0.818 0.487 2.13 · 1026

CD 0.770 47 0.700 (0.662–0.736) 0.603 0.788 2.20 · 10216

Area under the ROC curve, accuracy, sensitivity, specificity, and significance were calculated for both UC and CD models.
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UC) is consistent with a decreased capacity of IgG to suppress
inflammation, and thus could potentially be viewed as a decrease
in “natural anti-inflammatory immunoglobulin therapy” in patients
with IBD. The variation of IgG glycome composition in human
population is very large,19 and it is up to 80% heritable,20 thus this
more proinflammatory IgG glycome may also be a predisposition
for the development of inflammatory diseases.

Approximately, 18% of IgG glycans contain bisecting
GlcNAc, which significantly changes the structural properties of
the glycan.19 Although the decrease in bisecting GlcNAc on indi-
vidual glycoforms did not reach statistical significance, the increase
was consistently present on G0, G1, and G2 structures and the
increase in total incidence of glycans with bisecting glycans was
statistically significant in CD (B total, Table 2). The effects of
bisecting GlcNAc on functional properties of IgG are not well
understood,12 but it is intriguing that an enzyme responsible for
the addition of bisecting GlcNAc (GNT-III, coded by MGAT3
gene) was also identified as the IBD susceptibility locus.5,47

The differential glycosylation described above may provide
exciting insights into disease pathogenesis. However, causation is
difficult to infer in data from those already diagnosed with the
condition, and the observed changes may be consequence rather
than cause of the disease. Nonetheless, glycobiology may be of
immediate clinical relevance. Sialylation of IgG was found to be
essential for the function of IVIg, and Fc fragments alone were
found to be sufficient to suppress inflammation.48 It seems that Fc
with sialylated glycans suppresses inflammation through a novel
TH2 pathway, which provides an intrinsic mechanism for main-
taining immune homeostasis that could, in future, be manipulated
to provide therapeutic benefit.49 This is especially important given
the widespread use of anti-TNFa monoclonal antibody therapy in
IBD. Similarly, the mechanism of action of oncological mono-
clonal antibody therapies may derive from the therapeutic immu-
noglobulins lacking a core fucose, which in turn may lead to
enhanced ADCC.50,51 The analysis of individual variation of host
immunoglobulin glycosylation also has great clinical potential

FIGURE 3. ROC curves illustrating the performance of logistic regression model in predicting disease status for patients with UC and healthy
controls (A) and patients with CD and healthy controls (B). Principal component analysis plots for patients with UC and healthy controls (C) and
patients with CD and healthy controls (D).
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because it was recently demonstrated that variations in host IgG
glycosylation may have an effect on the success of therapy.52

Glycan traits are also attractive candidates as biomarkers.
Previous studies have attempted to define panels or ratios of N-linked
serum glycans, which correlate with IBD diagnosis or disease course.
Shinzaki et al37 describe a ratio of IgG with no galactoses to 2
galactoses (G0:G2), which compares favorably as a diagnostic
biomarker to the serological marker anti-Saccharomyces cerevisiae
antibodies currently in clinical use. Miyahara et al demonstrate that
a ratio of glycans of a specific molecular weight (m/z 2378/1914) and
highly sialylated multibranched glycans correlates with UC disease
activity (clinical activity index score .10), disease extent, and exist-
ing markers of disease activity such as C-reactive protein. On multi-
variable analysis, this ratio of 2 specific glycan structures (m/z
2378/1914) was an independent prognostic factor for patients with
UC requiring proctocolectomy.18

This is the largest study to date to compare IgG glycan
structure in the context of IBD. This study both validates and
expands upon the previous findings of serum glycan profiling in
IBD,18 using an alternative methodology (UPLC), which is also
able to describe changes in sialylation, bisecting GlcNAc, and
core fucosylation. Advancing technology, allowing high-
throughput assessment of IgG glycan profiles, together with the
ease of access to serum samples make glycan traits attractive and
clinically feasible biomarkers.

The main limitation of this study was the retrospective
nature of sample collection and limited phenotypic and outcome
data available for included patients. Patients were sampled at
various points in the disease course and after the administration of
different therapeutics, thus providing only a cross sectional “snap-
shot” of glycosylation in IBD. It would be useful to observe
longitudinal changes in glycan composition with differing disease
courses and treatments. Ongoing prospective efforts by this con-
sortium aim to validate the findings of this study while addressing
some of the aforementioned limitations (www.ibdbiom.eu).

CONCLUSIONS
We have described differences in glycosylation in IBD that

are indicative of an increased inflammatory potential of IgG in
IBD. Changes in IgG glycosylation may contribute to disease
pathogenesis and could affect the efficacy of monoclonal
antibody-based therapeutics commonly used in IBD. IgG glycan
expression profiles may be developed as clinical useful bio-
markers in the future.
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