239 research outputs found

    Effect of elevated CO2 on peanut performance in a semi-arid production region

    Get PDF
    With the intensification and frequency of heat waves and periods of water deficit stress, along with rising atmospheric carbon dioxide [CO2], understanding the seasonal leaf-gas-exchange responses to combined abiotic factors will be important in predicting crop performance in semi-arid production systems. In peanut (Arachis hypogaea L.), the availability of developmental stage physiological data on the response to repeated water deficit stress periods in an elevated [CO2] (EC) environment is limited and necessary to improve crop model predictions. Here, we investigated the effects of season-long EC (650 µmol CO2 m−2 s−1) on the physiology and productivity of peanut in a semi-arid environment. This study was conducted over two-growing seasons using field-based growth chambers to maintain EC conditions, and impose water-stress at three critical developmental stages. Our results showed that relative to ambient [CO2] (AC), long-term EC during water-stress episodes, increased leaf-level light-saturated CO2 assimilation (Asat), transpiration efficiency (TE), vegetative biomass, and pod yield by 58%, 73%, 58%, and 39%, respectively. Although leaf nitrogen content was reduced by 16%, there was 41% increase in maximum Rubisco carboxylation efficiency in EC, indicating that there was minimal photosynthetic down-regulation. Furthermore, long-term EC modified the short-term physiological response (Asat) to rapid changes in [CO2] during the water-stress episodes, generating a much greater change in EC (54%) compared to AC (10%). Additionally, long-term EC generated a 23% greater Asat compared to the short-term EC during the water-stress episodes. These findings indicate high levels of physiological adjustment in EC, which may increase drought resilience. We concluded that EC may reduce the negative impacts of repeated water-stress events at critical developmental stages on rain-fed peanut in semi-arid regions. These results can inform current models to improve the projections of peanut response to future climates

    The Atacama Cosmology Telescope: Physical Properties and Purity of a Galaxy Cluster Sample Selected via the Sunyaev-Zel'dovich Effect

    Get PDF
    We present optical and X-ray properties for the first confirmed galaxy cluster sample selected by the Sunyaev-Zel'dovich Effect from 148 GHz maps over 455 square degrees of sky made with the Atacama Cosmology Telescope. These maps, coupled with multi-band imaging on 4-meter-class optical telescopes, have yielded a sample of 23 galaxy clusters with redshifts between 0.118 and 1.066. Of these 23 clusters, 10 are newly discovered. The selection of this sample is approximately mass limited and essentially independent of redshift. We provide optical positions, images, redshifts and X-ray fluxes and luminosities for the full sample, and X-ray temperatures of an important subset. The mass limit of the full sample is around 8e14 Msun, with a number distribution that peaks around a redshift of 0.4. For the 10 highest significance SZE-selected cluster candidates, all of which are optically confirmed, the mass threshold is 1e15 Msun and the redshift range is 0.167 to 1.066. Archival observations from Chandra, XMM-Newton, and ROSAT provide X-ray luminosities and temperatures that are broadly consistent with this mass threshold. Our optical follow-up procedure also allowed us to assess the purity of the ACT cluster sample. Eighty (one hundred) percent of the 148 GHz candidates with signal-to-noise ratios greater than 5.1 (5.7) are confirmed as massive clusters. The reported sample represents one of the largest SZE-selected sample of massive clusters over all redshifts within a cosmologically-significant survey volume, which will enable cosmological studies as well as future studies on the evolution, morphology, and stellar populations in the most massive clusters in the Universe.Comment: 20 pages, 15 figures, 6 tables. Accepted for publication in ApJ. Higher resolution figures available at: http://peumo.rutgers.edu/~felipe/e-prints

    Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity

    Get PDF
    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria

    Building a Field: The Future of Astronomy with Gravitational Waves

    Get PDF
    Harnessing the sheer discovery potential of GW Astronomy will require bold, deliberate,and sustained efforts to train and develop the requisite workforce. The next decaderequires a strategic plan to build - from the ground up - a robust, open, andwell-connected GW Astronomy community with deep participation from traditionalastronomers, physicists, data scientists, and instrumentalists. This basic infrastructure issorely needed as an enabling foundation for research. We outline a set ofrecommendations for funding agencies, universities, and professional societies to helpbuild a thriving, diverse, and inclusive new field

    Space Based Gravitational Wave Astronomy Beyond LISA

    Get PDF
    The Laser Interferometer Space Antenna (LISA) will open three decades of gravitational wave(GW) spectrum between 0.1 and 100 mHz, the mHz band [1]. This band is expected to be the richest part of the GW spectrum, in types of sources, numbers of sources, signal-to-noise ratios and discovery potential. When LISA opens the low-frequency window of the gravitational wave spectrum,around 2034, the surge of gravitational-wave astronomy will strongly compel a subsequent mission to further explore the frequency bands of the GW spectrum that can only be accessed from space. The 2020's is the time to start developing technology and studying mission concepts for a large-scale mission to be launched in the 2040's. The mission concept would then be proposed to Astro2030. Only space-based missions can access the GW spectrum between 108 and 1 Hz because of the Earth's seismic noise. This white paper surveys the science in this band and mission concepts that could accomplish that science. The proposed small scale activity is a technology development program that would support a range of concepts and a mission concept study to choose a specific mission concept for Astro2030. In this white paper, we will refer to a generic GW mission beyond LISA as bLISA

    Carbon sequestration in the deep Atlantic enhanced by Saharan dust

    Get PDF
    Enhanced atmospheric input of dust-borne nutrients and minerals to the remote surface ocean can potentially increase carbon uptake and sequestration at depth. Nutrients can enhance primary productivity, and mineral particles act as ballast, increasing sinking rates of particulate organic matter. Here we present a two-year time series of sediment trap observations of particulate organic carbon flux to 3,000 m depth, measured directly in two locations: the dust-rich central North Atlantic gyre and the dust-poor South Atlantic gyre. We find that carbon fluxes are twice as high and a higher proportion of primary production is exported to depth in the dust-rich North Atlantic gyre. Low stable nitrogen isotope ratios suggest that high fluxes result from the stimulation of nitrogen fixation and productivity following the deposition of dust-borne nutrients. Sediment traps in the northern gyre also collected intact colonies of nitrogen-fixing Trichodesmium species. Whereas ballast in the southern gyre is predominantly biogenic, dust-derived mineral particles constitute the dominant ballast element during the enhanced carbon fluxes in the northern gyre. We conclude that dust deposition increases carbon sequestration in the North Atlantic gyre through the fertilization of the nitrogen-fixing community in surface waters and mineral ballasting of sinking particles

    Movements and Population Structure of Humpback Whales in the North Pacific

    Get PDF
    Despite the extensive use of photographic identification methods to investigate humpback whales in the North Pacific, few quantitative analyses have been conducted. We report on a comprehensive analysis of interchange in the North Pacific among three wintering regions (Mexico, Hawaii, and Japan) each with two to three subareas, and feeding areas that extended from southern California to the Aleutian Islands. Of the 6,413 identification photographs of humpback whales obtained by 16 independent research groups between 1990 and 1993 and examined for this study, 3,650 photographs were determined to be of suitable quality. A total of 1,241 matches was found by two independent matching teams, identifying 2,712 unique whales in the sample (seen one to five times). Site fidelity was greatest at feeding areas where there was a high rate of resightings in the same area in different years and a low rate of interchange among different areas. Migrations between winter regions and feeding areas did not follow a simple pattern, although highest match rates were found for whales that moved between Hawaii and southeastern Alaska, and between mainland and Baja Mexico and California. Interchange among subareas of the three primary wintering regions was extensive for Hawaii, variable (depending on subareas) for Mexico, and low for Japan and reflected the relative distances among subareas. Interchange among these primary wintering regions was rare. This study provides the first quantitative assessment of the migratory structure of humpback whales in the entire North Pacific basin
    • …
    corecore