34 research outputs found

    Retardation of heat exchanger surfaces mineral fouling by water-based diethylenetriamine pentaacetate-treated CNT nanofluids

    Get PDF
    Mineral scale deposition on heat exchanging surfaces increases the thermal resistance and reduces the operating service life. The effect is usually intensified at higher temperatures due to the inverse temperature solubility characteristics of some minerals in the cooling water. Scale formation build up when dissolved salt crystallize from solution onto the heated surface, forming an adherent deposit. It is very important for heat transfer applications to cope with the fouling problems in industry. In this present study, a set of fouling experiments was conducted to evaluate the mitigation of calcium carbonate scaling by applying DTPA-treated MWCNT-based water nanofluids on heat exchanger surfaces. Investigation of additive DTPA-treated MWCNT-based water nanofluids (benign to the environment) on fouling rate of deposition was performed. 300 mg L−1 of artificially-hardened calcium carbonate solution was prepared as a fouling solution for deposit analysis. Assessment of the deposition of calcium carbonate on the heat exchanger surface with respect to the inhibition of crystal growth was conducted by Scanning Electron Microscope (SEM). The results showed that the formation of calcium carbonate crystals can be retarded significantly by adding MWCNT-DTPA additives as inhibition in the solution

    Calcium carbonate fouling on double-pipe heat exchanger with different heat exchanging surfaces

    Get PDF
    An experimental setup of double pipe heat exchanger fouling test rig was built to investigate the mineral scale deposition on different heat exchanger pipe surfaces. Progressive fouling deposition on different material surfaces under the similar solution conditions were observed and analyzed. Measurable data on the progressive build-up of scale deposits, deposition rate, as well as the composition and crystal morphology of the deposits were studied after each experimental run by analyzing the deposited scale on the test pipes. In this research the artificial calcium carbonate deposit on different material surfaces is considered as it is one of the major constituents of the most scales found in heat exchanging equipment. Fouling on different smooth test pipes were investigated in the centrally located larger concentric pipe heat exchanger. Uniform flow condition near the pipe surface was maintained by constant flow rate throughout the system. The calcium carbonate deposition rates on five different metal surfaces (Stainless steel 316, brass, copper, aluminium and carbon steel) were investigated. The results illustrated an upward trend for fouling rate with time on the tested specimens. The deposition on the surfaces showed a linear growth with the enhancement of thermal conductivity of the metals. However, deposition on carbon steel metal surfaces did not follow the typical linear trend of thermal conductivity over deposition as its surface was altered by corrosion effects. In addition, temperature, velocity, and concentration effects on fouling deposition were investigated on the SS316 metal surface. It is noted that the fouling deposition increases with the increase of temperature and concentration due to enhanced deposition potential whereas reduces due to the increase of velocity which enhances shear stress. © 2017 Elsevier B.V

    Service quality of private hospitals: The Iranian Patients' perspective

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Highly competitive market in the private hospital industry has caused increasing pressure on them to provide services with higher quality. The aim of this study was to determine the different dimensions of the service quality in the private hospitals of Iran and evaluating the service quality from the patients' perspective.</p> <p>Methods</p> <p>A cross-sectional study was conducted between October and November 2010 in Tehran, Iran. The study sample was composed of 983 patients randomly selected from 8 private general hospitals. The study questionnaire was the SERVQUAL questionnaire, consisting of 21 items in service quality dimensions.</p> <p>Results</p> <p>The result of factor analysis revealed 3 factors, explaining 69% of the total variance. The total mean score of patients' expectation and perception was 4.91(SD = 0.2) and 4.02(SD = 0.6), respectively. The highest expectation and perception related to the tangibles dimension and the lowest expectation and perception related to the empathy dimension. The differences between perception and expectation were significant (p < 0.001). There was a significant difference between the expectations scores based on gender, education level, and previous hospitalization in that same hospital. Also, there was a significant difference between the perception scores based on insurance coverage, average length of stay, and patients' health conditions on discharge.</p> <p>Conclusion</p> <p>The results showed that SERVQUAL is a valid, reliable, and flexible instrument to monitor and measure the quality of the services in private hospitals of Iran. Our findings clarified the importance of creating a strong relationship between patients and the hospital practitioners/personnel and the need for hospital staff to be responsive, credible, and empathetic when dealing with patients.</p

    Microstructural and Electrical Features of Yttrium Stabilised Zirconia with ZnO as Sintering Additive

    Get PDF
    Adding ZnO reduces sintering temperature of yttria stabilized zirconia. Adding up to 0.5 wt% of ZnO is possible to densify to 8 mol% yttria stabilized zirconia (TZ8Y) to 95% of relative density at 1300 °C, besides, the electrical conductivity increases about 30% at 800 °C when compared to pure TZ8Y with the same relative density and average grain size. These results show that TZ8Y co-doped with ZnO can be a potential electrolyte to solid oxide fuel cells and electrolyzer cells

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P &lt; 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P &lt; 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk

    Autothermal reforming of palm empty fruit bunch bio-oil: thermodynamic modelling

    Get PDF
    This work focuses on thermodynamic analysis of the autothermal reforming of palm empty fruit bunch (PEFB) bio-oil for the production of hydrogen and syngas. PEFB bio-oil composition was simulated using bio-oil surrogates generated from a mixture of acetic acid, phenol, levoglucosan, palmitic acid and furfural. A sensitivity analysis revealed that the hydrogen and syngas yields were not sensitive to actual bio-oil composition, but were determined by a good match of molar elemental composition between real bio-oil and surrogate mixture. The maximum hydrogen yield obtained under constant reaction enthalpy and pressure was about 12 wt% at S/C = 1 and increased to about 18 wt% at S/C = 4; both yields occurring at equivalence ratio Φ of 0.31. The possibility of generating syngas with varying H2 and CO content using autothermal reforming was analysed and application of this process to fuel cells and Fischer-Tropsch synthesis is discussed. Using a novel simple modelling methodology, reaction mechanisms were proposed which were able to account for equilibrium product distribution. It was evident that different combinations of reactions could be used to obtain the same equilibrium product concentrations. One proposed reaction mechanism, referred to as the ‘partial oxidation based mechanism’ involved the partial oxidation reaction of the bio-oil to produce hydrogen, with the extent of steam reforming and water gas shift reactions varying depending on the amount of oxygen used. Another proposed mechanism, referred to as the ‘complete oxidation based mechanism’ was represented by thermal decomposition of about 30% of bio-oil and hydrogen production obtained by decomposition, steam reforming, water gas shift and carbon gasification reactions. The importance of these mechanisms in assisting in the eventual choice of catalyst to be used in a real ATR of PEFB bio-oil process was discussed

    Calcium orthophosphate-based biocomposites and hybrid biomaterials

    Full text link

    Effect of different deposition techniques of PCDTBT:PC<inf>71</inf>BM composite on the performance of capacitive-type humidity sensors

    Full text link
    The performance and hence pragmatic use of organic humidity sensors requires various factors to be addressed outside of progress in high-performance organic-based sensing materials. While important, evaluation of fabrication techniques also requires attention to optimise performance. Herein we report the effect of different application techniques on the humidity sensing performance of poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)] (PCDTBT) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) organic composites. Spin-coating, immersion and drop-casting techniques have been applied to prepare sensors. Field-emission scanning electronic microscopy (FESEM) analysis of the prepared films revealed different types of self-assembled nanorods and nanotubes to be formed. The morphological and self-assembled differences could be attributed to various crystallisation processes as a result of different deposition techniques. Capacitive responses of all three sensors have been studied as a function of relative humidity at room temperature. PCDTBT:PC71BM composites prepared through the immersion technique showed superior sensing performance including higher sensitivity (62.34 pF/%RH) than sensors prepared through the spin coating (0.2 pF/%RH) and drop-casting (7.5 pF/%RH) techniques. The superior sensing performance of the sensor prepared through the immersion technique can be ascribed to both the nanotube and porous morphology exhibited
    corecore