393 research outputs found

    A Machine Learning Approach for Reconnaissance Detection to Enhance Network Security

    Get PDF
    Before cyber-crime can happen, attackers must research the targeted organization to collect vital information about the target and pave the way for the subsequent attack phases. This cyber-attack phase is called reconnaissance or enumeration. This malicious phase allows attackers to discover information about a target to be leveraged and used in an exploit. Information such as the version of the operating system and installed applications, open ports can be detected using various tools during the reconnaissance phase. By knowing such information cyber attackers can exploit vulnerabilities that are often unique to a specific version. In this work, we develop an end-to-end system that uses machine learning techniques to detect reconnaissance attacks on cyber networks. Successful detection of such attacks provides the target the time to devise plans on how to evade or mitigate the cyber-attack phases that supervene the reconnaissance phase

    Mycobacterium Bovis (Strain BCG) Effects on the Growth and Metastasis of a Transplantable Hamster Lung Adenocarcinoma

    Get PDF
    Author Institution: Department of Microbiology, and Comprehensive Cancer Center, The Ohio State UniversityThe effect of Bacillus-Calmette-Guerin (BCG) on the growth of an adenocarcinoma of the lung induced in a Syrian hamster was evaluated. It inhibited intradermal growth of the tumor when the tumor cells were mixed with high doses of BCG prior to intradermal injection. The development of lung metastasis after excision of the primary intradermal tumor was inhibited by BCG at doses 100 times lower than those used to inhibit the growth of intradermal tumors. The results suggest that effective immunotherapy may depend on the number of viable BCG cells, the route of administration, and the anatomic location of the tumor

    In vitro Biofilm Formation in an 8-well Chamber Slide

    Get PDF
    The chronic nature of many diseases is attributed to the formation of bacterial biofilms which are recalcitrant to traditional antibiotic therapy. Biofilms are community-associated bacteria attached to a surface and encased in a matrix. The role of the extracellular matrix is multifaceted, including facilitating nutrient acquisition, and offers significant protection against environmental stresses (e.g. host immune responses). In an effort to acquire a better understanding as to how the bacteria within a biofilm respond to environmental stresses we have used a protocol wherein we visualize bacterial biofilms which have formed in an 8-well chamber slide. The biofilms were stained with the BacLight Live/Dead stain and examined using a confocal microscope to characterize the relative biofilm size, and structure under varying incubation conditions. Z-stack images were collected via confocal microscopy and analyzed by COMSTAT. This protocol can be used to help elucidate the mechanism and kinetics by which biofilms form, as well as identify components that are important to biofilm structure and stability

    Transcutaneous immunization as preventative and therapeutic regimens to protect against experimental otitis media due to nontypeable Haemophilus influenzae

    Get PDF
    We have developed three nontypeable Haemophilus influenzae (NTHI) adhesin-derived immunogens that are significantly efficacious against experimental otitis media (OM) due to NTHI when delivered parenterally. We now expanded our preventative immunization strategies to include transcutaneous immunization (TCI) as a less invasive, but potentially equally efficacious, regimen to prevent OM due to NTHI. Additionally, we examined the potential of TCI as a therapeutic immunization regimen to resolve ongoing experimental OM. Preventative immunization with NTHI outer membrane protein (OMP) P5- and type IV pilus-targeted immunogens, delivered with the adjuvant LT(R192G-L211A), induced significantly earlier clearance of NTHI from the nasopharynges and middle ears of challenged chinchillas compared with receipt of immunogen or adjuvant alone. Moreover, therapeutic immunization resulted in significant resolution of established NTHI biofilms from the middle ear space of animals compared with controls. These data advocate TCI with the adhesin-directed immunogens as an efficacious regimen for prevention and resolution of experimental NTHI-induced OM

    Enhanced biofilm and extracellular matrix production by chronic carriage versus acute isolates of Salmonella Typhi.

    Get PDF
    Salmonella Typhi is the primary causative agent of typhoid fever; an acute systemic infection that leads to chronic carriage in 3-5% of individuals. Chronic carriers are asymptomatic, difficult to treat and serve as reservoirs for typhoid outbreaks. Understanding the factors that contribute to chronic carriage is key to development of novel therapies to effectively resolve typhoid fever. Herein, although we observed no distinct clustering of chronic carriage isolates via phylogenetic analysis, we demonstrated that chronic isolates were phenotypically distinct from acute infection isolates. Chronic carriage isolates formed significantly thicker biofilms with greater biomass that correlated with significantly higher relative levels of extracellular DNA (eDNA) and DNABII proteins than biofilms formed by acute infection isolates. Importantly, extracellular DNABII proteins include integration host factor (IHF) and histone-like protein (HU) that are critical to the structural integrity of bacterial biofilms. In this study, we demonstrated that the biofilm formed by a chronic carriage isolate in vitro, was susceptible to disruption by a specific antibody against DNABII proteins, a successful first step in the development of a therapeutic to resolve chronic carriage

    The Multifunctional Host Defense Peptide SPLUNC1 Is Critical for Homeostasis of the Mammalian Upper Airway

    Get PDF
    Otitis media (OM) is a highly prevalent pediatric disease caused by normal flora of the nasopharynx that ascend the Eustachian tube and enter the middle ear. As OM is a disease of opportunity, it is critical to gain an increased understanding of immune system components that are operational in the upper airway and aid in prevention of this disease. SPLUNC1 is an antimicrobial host defense peptide that is hypothesized to contribute to the health of the airway both through bactericidal and non-bactericidal mechanisms. We used small interfering RNA (siRNA) technology to knock down expression of the chinchilla ortholog of human SPLUNC1 (cSPLUNC1) to begin to determine the role that this protein played in prevention of OM. We showed that knock down of cSPLUNC1 expression did not impact survival of nontypeable Haemophilus influenzae, a predominant causative agent of OM, in the chinchilla middle ear under the conditions tested. In contrast, expression of cSPLUNC1 was essential for maintenance of middle ear pressure and efficient mucociliary clearance, key defense mechanisms of the tubotympanum. Collectively, our data have provided the first in vivo evidence that cSPLUNC1 functions to maintain homeostasis of the upper airway and, thereby, is critical for protection of the middle ear

    Phase Variation in HMW1A Controls a Phenotypic Switch in Haemophilus influenzae Associated with Pathoadaptation during Persistent Infection

    Get PDF
    Genetic variants arising from within-patient evolution shed light on bacterial adaptation during chronic infection. Contingency loci generate high levels of genetic variation in bacterial genomes, enabling adaptation to the stringent selective pressures exerted by the host. A significant gap in our understanding of phase-variable contingency loci is the extent of their contribution to natural infections. The human-adapted pathogen nontypeable Haemophilus influenzae (NTHi) causes persistent infections, which contribute to underlying disease progression. The phase-variable high-molecular-weight (HMW) adhesins located on the NTHi surface mediate adherence to respiratory epithelial cells and, depending on the allelic variant, can also confer high epithelial invasiveness or hyperinvasion. In this study, we characterize the dynamics of HMW-mediated hyperinvasion in living cells and identify a specific HMW binding domain shared by hyperinvasive NTHi isolates of distinct pathological origins. Moreover, we observed that HMW expression decreased over time by using a longitudinal set of persistent NTHi strains collected from chronic obstructive pulmonary disease (COPD) patients, resulting from increased numbers of simple-sequence repeats (SSRs) downstream of the functional P2hmw1A promoter, which is the one primarily driving HMW expression. Notably, the increased SSR numbers at the hmw1 promoter region also control a phenotypic switch toward lower bacterial intracellular invasion and higher biofilm formation, likely conferring adaptive advantages during chronic airway infection by NTHi. Overall, we reveal novel molecular mechanisms of NTHi pathoadaptation based on within-patient lifestyle switching controlled by phase variation. IMPORTANCE Human-adapted bacterial pathogens have evolved specific mechanisms to colonize their host niche. Phase variation is a contingency strategy to allow adaptation to changing conditions, as phase-variable bacterial loci rapidly and reversibly switch their expression. Several NTHi adhesins are phase variable. These adhesins are required for colonization but also immunogenic, in such a way that bacteria with lower adhesin levels are better equipped to survive an immune response, making their contribution to natural infections unclear. We show here that the major NTHi adhesin HMW1A displays allelic variation, which can drive a phase-variable epithelial hyperinvasion phenotype. Over time, hmw1A phase variation lowers adhesin expression, which controls an NTHi lifestyle switch from high epithelial invasiveness to lower invasion and higher biofilm formation. This reversible loss of function aligns with the previously stated notion that epithelial infection is essential for NTHi infection establishment, but once established, persistence favors gene inactivation, in this case facilitating biofilm growth

    Construction of non-polar mutants in Haemophilus influenzae using FLP recombinase technology

    Get PDF
    Background Nontypeable Haemophilus influenzae (NTHi) is a gram-negative bacterium that causes otitis media in children as well as other infections of the upper and lower respiratory tract in children and adults. We are employing genetic strategies to identify and characterize virulence determinants in NTHi. NTHi is naturally competent for transformation and thus construction of most mutants by common methodologies is relatively straightforward. However, new methodology was required in order to construct unmarked non-polar mutations in poorly expressed genes whose products are required for transformation. We have adapted the lambda red/FLP-recombinase-mediated strategy used in E. coli for use in NTHi. Results A cassette containing a spectinomycin resistance gene and an rpsL gene flanked by FRT sites was constructed. A PCR amplicon containing 50 base pairs of DNA homologous to the 5' and 3' ends of the gene to be disrupted and the cassette was generated, then recombineered into the target NTHi gene, cloned on a plasmid, using the lambda recombination proteins expressed in E. coli DY380. Thus, the gene of interest was replaced by the cassette. The construct was then transformed into a streptomycin resistant NTHi strain and mutants were selected on spectinomycin-containing growth media. A plasmid derived from pLS88 with a temperature sensitive replicon expressing the FLP recombinase gene under the control of the tet operator/repressor was constructed. This plasmid was electroporated into the NTHi mutant at the permissive temperature and FLP expression was induced using anhydrotetracycline. The recombinase recognizes the FRT sites and eliminates the antibiotic cassette by site-specific recombination, creating the unmarked non-polar mutation. The plasmid is cured by growth of cells at the restrictive temperature. Conclusion The products of the genes in the NTHi pilABCD operon are required for type IV pilus biogenesis and have a role in transformation. We demonstrated the utility of our methodology by the construction of a non-polar pilA mutation in NTHi strain 2019 and complementation of the mutation with a plasmid containing the pilA gene. Utilization of this approach allowed us to readily generate unmarked non-polar mutations in NTHi genes.This work was supported by NIH grants R01DC007464 to RSM, R01DC003915 to Lauren Bakaletz and a subcontract from N01AI30040 to Michael Apicella. We thank Michael Apicella for the gifts of NTHi strains 2019 and 2019 rpsL

    The central region of the msp gene of Treponema denticola has sequence heterogeneity among clinical samples, obtained from patients with periodontitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Treponema denticola </it>is an oral spirochete involved in the pathogenesis and progression of periodontal disease. Of its virulence factors, the major surface protein (MSP) plays a role in the interaction between the treponeme and host. To understand the possible evolution of this protein, we analyzed the sequence of the <it>msp </it>gene in 17 <it>T. denticola </it>positive clinical samples.</p> <p>Methods</p> <p>Nucleotide and amino acid sequence of MSP have been determined by PCR amplification and sequencing in seventeen <it>T. denticola </it>clinical specimens to evaluate the genetic variability and the philogenetic relationship of the <it>T. denticola msp </it>gene among the different amplified sequence of positive samples. In silico antigenic analysis was performed on each MSP sequences to determined possible antigenic variation.</p> <p>Results</p> <p>The <it>msp </it>sequences showed two highly conserved 5' and 3' ends and a central region that varies substantially. Phylogenetic analysis categorized the 17 specimens into 2 principal groups, suggesting a low rate of evolutionary variability and an elevated degree of conservation of <it>msp </it>in clinically derived genetic material. Analysis of the predicted antigenic variability between isolates, demonstrated that the major differences lay between amino acids 200 and 300.</p> <p>Conclusion</p> <p>These findings showed for the first time, the nucleotide and amino acids variation of the <it>msp </it>gene in infecting <it>T. denticola</it>, <it>in vivo</it>. This data suggested that the antigenic variability found in to the MSP molecule, may be an important factor involved in immune evasion by <it>T. denticola</it>.</p
    corecore