
East Tennessee State University East Tennessee State University

Digital Commons @ East Tennessee Digital Commons @ East Tennessee

State University State University

Electronic Theses and Dissertations Student Works

5-2022

A Machine Learning Approach for Reconnaissance Detection to A Machine Learning Approach for Reconnaissance Detection to

Enhance Network Security Enhance Network Security

Rachel Bakaletz
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, Information Security Commons, and the OS

and Networks Commons

Recommended Citation Recommended Citation
Bakaletz, Rachel, "A Machine Learning Approach for Reconnaissance Detection to Enhance Network
Security" (2022). Electronic Theses and Dissertations. Paper 4032. https://dc.etsu.edu/etd/4032

This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @
East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an
authorized administrator of Digital Commons @ East Tennessee State University. For more information, please
contact digilib@etsu.edu.

https://dc.etsu.edu/
https://dc.etsu.edu/
https://dc.etsu.edu/etd
https://dc.etsu.edu/student-works
https://dc.etsu.edu/etd?utm_source=dc.etsu.edu%2Fetd%2F4032&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=dc.etsu.edu%2Fetd%2F4032&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=dc.etsu.edu%2Fetd%2F4032&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=dc.etsu.edu%2Fetd%2F4032&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=dc.etsu.edu%2Fetd%2F4032&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digilib@etsu.edu

A Machine Learning Approach for Reconnaissance Detection to Enhance Network Security

A thesis

presented to

the faculty of the Department of Computing

East Tennessee State University

In partial fulfillment

of the requirements for the degree

Master of Science in Computer and Information Systems, Information Technology

by

Rachel Bakaletz

May 2022

Dr. Ghaith Husari, Chair

Dr. Brian Bennett, Committee Member

Dr. Mohammad Khan, Committee Member

Keywords: machine learning, reconnaissance, intrusion detection, cybersecurity analytics,

classification

2

ABSTRACT

A Machine Learning Approach for Reconnaissance Detection to Enhance Network Security

by

Rachel Bakaletz

Before cyber-crime can happen, attackers must research the targeted organization to collect vital

information about the target and pave the way for the subsequent attack phases. This cyber-

attack phase is called reconnaissance or enumeration. This malicious phase allows attackers to

discover information about a target to be leveraged and used in an exploit. Information such as

the version of the operating system and installed applications, open ports can be detected using

various tools during the reconnaissance phase. By knowing such information cyber attackers can

exploit vulnerabilities that are often unique to a specific version.

In this work, we develop an end-to-end system that uses machine learning techniques to detect

reconnaissance attacks on cyber networks. Successful detection of such attacks provides the

target the time to devise plans on how to evade or mitigate the cyber-attack phases that

supervene the reconnaissance phase.

3

Copyright 2022 by Rachel Bakaletz

All Rights Reserved

4

DEDICATION

Dedicated to my boyfriend, Michael. Thank you for your unwavering love and support

over the last 2 years. I could not have done this without you.

5

ACKNOWLEDGEMENTS

 Thank you to my committee, Dr. Husari, Dr. Bennett, and Dr. Khan for supporting me

and helping to guide me through the thesis process.

6

TABLE OF CONTENTS

ABSTRACT .. 2

DEDICATION .. 4

ACKNOWLEDGEMENTS .. 5

LIST OF TABLES .. 8

LIST OF FIGURES .. 9

Chapter 1. Introduction .. 9

1.1 Cyber Reconnaissance Attack Phase .. 11

1.2 Malicious Traffic Flow ... 11

1.3 Virtual Machines ... 12

1.3.1 Kali Linux .. 12

1.3.1 Metasploitable .. 12

1.3.3 DVWA ... 13

1.4 Machine Learning ... 13

1.4.1 Decision Tree ... 13

1.4.2 Naïve Bayes ... 13

1.4 Remaining Organization of Thesis ... 14

2.1 Background ... 15

2.1.1 Aggressive Scanning .. 15

2.1.2 Stealth Scanning... 15

2.1.3 NMAP .. 16

2.1.4 Nikto .. 16

2.1.5 Metasploit .. 17

7

2.2 Literature Review .. 17

3.1 Approach Design and Architecture ... 20

3.1.1 Generating Malicious Traffic ... 20

3.1.2 Generating Legitimate (Non-malicious) Traffic .. 23

3.1.2 Feature Extraction .. 23

3.1.3 The Variance of the Features ... 25

3.1.4 Constructing the Classification Model... 26

Chapter 4. Evaluation .. 29

4.1 Supervised Learning ... 29

4.2 Precision, Recall, and F score ... 29

4.2.1 Recall ... 30

4.2.2 Precision ... 30

4.2.3 F-score.. 30

4.3 Experimental Results .. 30

4.4 Discussion ... 33

Chapter 5. Conclusion .. 34

5.1 Future Work .. 34

REFERENCES ... 35

VITA ... 38

8

LIST OF TABLES

Table 1: Nmap functionalities and descriptions.. 16

Table 2: Nmap functionalities and descriptions.. 16

Table 3: Nmap tuning options and descriptions ... 17

Table 4: List of 26 features extracted from traffic flows and their description 24

9

LIST OF FIGURES

Figure 1: Reconnaissance Traffic Flow ... 12

Figure 2: Proposed design and implementation overview .. 20

Figure 3: Top 5 features extracted from traffic flows ... 26

Figure 4: Precision Results ... 31

Figure 5: Recall Results .. 31

Figure 6. F-Score Decision Tree Results .. 32

Figure 7: F-Score Naïve-Bayesian Results ... 32

10

Chapter 1. Introduction

Before cyber-crime can happen, criminals must do research on the target organization

they are planning to attack. This research is called enumeration or reconnaissance, and it allows

for a criminal to discover information about a target that can be used in an exploit. Information

such as version detection, open ports, and operating systems can be detected during

reconnaissance. By knowing the version of an application or service, criminals can exploit

vulnerabilities that are unique to a specific version. Criminals can also use known vulnerabilities

in operating systems to exploit their target.

When criminals do reconnaissance operations on an organization, there is data sent over

the network in the form of packets. These packets contain information and data that is unique to

the service that created them. Based on the contents of the packets, the initiating application or

software can be determined by looking at calculations such as the duration of the window flow,

average delta time, and standard deviation delta time. The duration of the window flow is how

long it took from the time the first packet sent to when the last packet was delivered. Average

delta time is the average from one packet to the next packet in a window of packets. Standard

deviation delta time is the standard deviation from one packet to the next packet in a window of

packets. Standard deviation is how dispersed a data set is in relation to the average of a data set.

Since the data in the packets is unique to a program, each type of reconnaissance will have

unique qualities. These unique qualities can be used to train a computer, in the form of

supervised machine learning, to recognize when an organization is about to be the victim of a

cyber-attack. Machine learning techniques use data and algorithms to mimic learning in human

brains. Supervised machine learning techniques use training sets help the models learn. As a

machine learns more over time, the accuracy of the machine improves.

11

1.1 Cyber Reconnaissance Attack Phase

The first step for cyber attackers is launch a reconnaissance attack with the objective of

collection information about the software (and sometimes the hardware) of the victim. This is an

essential step for attackers to discover potential weaknesses and software vulnerabilities in these

systems and subsequently leverage them to gain access to the victim’s machine, steal sensitive

information, or disrupt the victim’s system and potential make unavailable by conducting Denial

of Service (DoS) attacks.

1.2 Malicious Traffic Flow

On the cyber network plan, the reconnaissance phase is conducted using a series of

packets (traffic flow) that is engineered to interrogate the victim’s system and discover technical

information that will enable the attackers to use malicious tools and exploiting scripts to gain

access to the targeted machine.

Figure 1 illustrates the malicious traffic flow generated during a reconnaissance attack.

As shown in the Figure, these packets that are sent from the attacker’s machine to the victim’s

machine flow during a certain period of time (packet window). With this window containing the

malicious packets, cyber defenders can use the characteristics of such packet flows to detect

these attempts and devise a plan to respond to such attacks using Intrusion Detection Systems

(IDS) and Intrusion Prevention Systems (IPS). Responding to such attacks may contain various

countermeasures such as changing the virtual IP address of the targeted machine, block the

source IP address (malicious machine) from accessing the network, or force update the software

of the targeted machine using the forced reboot operating system functionality.

12

Figure 1: Reconnaissance Traffic Flow

1.3 Virtual Machines

 A virtual environment is the emulation, or reproduction, of a specific software system.

Virtual machines are part of a virtual environment and allow the user to run a different operating

system than what is on their current machine. For the experiments that I ran, I used virtual

machines as the target hosts for each attack. It is illegal to launch any attack against a machine

or service that you do not have permission to attack, or that you do not own. By using a virtual

machine, I was able to run attacks against targets without breaking any laws.

1.3.1 Kali Linux

Kali Linux is an operating system used for penetration and security testing. Kali Linux

contains hundreds of tools and programs that can be used to the security of a target or system.

All attacks used in this thesis were from Kali Linux.

1.3.1 Metasploitable

Metasploitable is a virtual machine that has purposeful vulnerabilities integrated in it.

Metasploitable can be used by penetration testers to test tools and conduct training. The web

application DVWA is housed in Metasploitable.

13

1.3.3 DVWA

Damn Vulnerable Web Application (DVWA) is a web application that is made to be

purposely vulnerable. DVWA offers security professionals a chance to try their penetration

testing tools in a controlled environment. It also offers web developers a chance to see all the

ways a web application may be unsecure.

1.4 Machine Learning

Supervised machine learning algorithms use labeled datasets to train models to correctly

classify data [1]. In supervised learning, models learn by using training sets of data. These

training sets teach the models to produce the proper output. The models learn over time from the

dataset, which include the correct outputs. The accuracy for the algorithms is measured in loss

function, which is the difference between the current output and the expected output. The model

will try and minimize this number as much as possible, to make the model as accurate as

possible.

1.4.1 Decision Tree

A decision tree is a type of supervised learning model that classifies data by transforming

that data into tree structure or representation [2]. When a decision tree learns, it continuously

splits the data based on specific parameters defined by the model. Some advantages of decision

tree models are that they require less data preparation, and missing values do not affect the tree-

building process.

1.4.2 Naïve Bayes

A Naïve-Bayes is type of supervised learning model that classifies data by using the

Bayes-Theorem [3]. The Bayes-Theorem uses conditional probability to predict outcomes.

Some advantages to using the Naïve-Bayes theorem is that it is easy to implement and gives

14

good results because prior training and knowledge can be combined with new data, which

improves the accuracy [4].

1.4 Remaining Organization of Thesis

The remainder of this thesis is organized as follows. In section 2, there is a discussion of

literature that inspired this thesis. In section 3, an overview of the design and implementation of

this architecture is presented. In section 4 the results of that architecture are evaluated by various

machine learning models. A conclusion is drawn and avenues for potential future work are

offered in section 5.

15

Chapter 2. Background and Literature Review

2.1 Background

As mentioned earlier, a cyber attacker must generate a series of packets engineered in a

certain way to interrogate the victim’s system and discover its technical information such as the

version of its operating system, installed applications, open ports, etc. Constructing these

packets manually is a tedious- and time-consuming process. To avoid this, cyber attackers use

automated tools that can generate and control these packets and achieve the objective in rapid

manner. This subsection introduces some of the popular (and malicious) tools that are used in

this domain.

2.1.1 Aggressive Scanning

In nmap, aggressive scanning is a type of scan against a target that provides information

such as operating system detection, version detection, script scanning and traceroute—the path

that network packets takes when data is transmitted in a system. The argument -A can be used

when initializing an aggressive nmap scan; however, it does have a higher rate of detection than

other forms of scans.

2.1.2 Stealth Scanning

In nmap, stealth scanning is a type of scan against a target that provides information such

as open ports. Based on this information, an attacker can find ways to exploit certain

vulnerabilities, or they could find out what services are running on specific ports. The argument

-s can be used when initializing a silent nmap scan, and it has a lower rate of detection than other

forms of scans like an aggressive scan.

16

2.1.3 NMAP

Nmap is network scanner that is available in Kali Linux. Nmap supplies many features

that can be used to discover information about a host. Nmap works by sending packets to a

target and analyzing the responses. Table 1 depicts some functionalities available to use in

nmap. This is not a complete list.

Table 1: Nmap functionalities and descriptions [5]

Functionality Description
-sS Scans TCP SYN ports
-sn Disables port scans, and only discovers hosts
-p Scans a specified port
-sV Determines the version of running services on

a port
-A Detects operating systems, software versions,

running scripts, and traceroute

2.1.4 Nikto

Nikto is similar to Nmap, but instead of computer systems, it scans web applications.

Nikto can check for a variety of issues in a vulnerable web application, like dangerous files and

outdated software or services. Tables 3 and 4 depict some functionalities available to use in

Nikto. This is not a complete list.

Table 2: Nmap functionalities and descriptions

Scan Options Description

-h Scans host

-h -port Scans a specific port on a host

-h -ssl Scans using SSL

-h -dbcheck Checks database of host

-h -nolookup Stops DNS lookups for a host

17

Table 3: Nmap tuning options and descriptions [6]

Tuning Options Description

0 Uploads a file to host

1 Allows user to view a specific file in a log

2 Default file misconfiguration

3 Displays information disclosure

4 Allows for XSS, Script, and HTML injection

2.1.5 Metasploit

Metasploitable is a penetration testing framework available in Kali Linux. In

Metasploitable, the user can customize attacks against a target. Metasploitable offers a

comprehensive set of tools that can be used to help test the security of a system or target.

2.2 Literature Review

This subsection outlines published research on cybersecurity analytics, as well as

research on using machine learning and network traffic to predict attacks. Topics such as

intrusion detection and image classification using machine learning are also discussed in this

section.

Fang et al. [7] propose a method involving machine learning that enhances intrusion

detection in computer systems. They use Elman neural networks and support vector machines

(SVM) to develop an intrusion detection system that ensures the safety of information systems

and computing devices connected to a network. Fang et al. [5] assert that their neural network

reduces missing text information by using a clustering algorithm and helps to further detect

18

abnormal behavior between packets. Their SVM helps to improve intrusion detection and lower

the false alarm rate of the models.

AL-Eidi et al. [8] propose a method that uses machine learning to detect malicious traffic

flows from legitimate traffic flows in Covert Timing Channels (CTC). The authors present an

automated CTC detection solution that converts traffic to colored images. Their solution detects

and locates malicious segments of traffic flows. Since their solution locates only malicious parts

of traffic flows, the quality of service is less impacted by the dropping of only the malicious flow

because entire channels are not blocked.

Anderson et al. [9] propose a machine learning framework that can detect even advanced

malware that has tried to obfuscate itself. The authors state that most malware detection systems

use classification algorithms along with static or dynamic features, but not both. Their proposed

framework uses classification algorithms along with both static and dynamic features for the

most complete detection model. The authors plan to do this by using kernels to assign a

similarity metric to each view which produces the most accurate support vector machine

classifier. [9]

Shon and Moon [10] propose a machine learning method using a Support Vector

Machine (SVM) classifiers to detect anomalies in network traffic. The authors assert that

signature-based detection programs are not sufficient given the swift evolution of viruses and

cyberattacks. This is due to the fact that signature-based tools can detect malicious tools using

characteristics can be easily changed by attackers such as the malicious file name and size. Their

method uses a hybrid approach of enhanced SVM’s to solve this issue. Along with using

SVM’s, Shon and Moon also use “a profile of normal packets using Self-Organized Feature Map

(SOFM), … a packet filtering scheme based on Passive TCP/IP Fingerprinting (PTF), … a

19

feature selection technique using a Genetic Algorithm (GA)…[and they] use the flow of packets

based on temporal relationships during data preprocessing” [10].

20

Chapter 3. Design and Implementation

This section presents a malicious traffic detection approach while detailing the necessary

steps for detecting malicious and non-malicious traffic using machine learning. This approach

can be categorized into 3 main sections: 1) Traffic generation from malicious and legitimate

traffic; 2) Feature extraction from packet captures; 3) Classification using Decision Tree and

Naïve Bayesian machine learning models. I used Kali Linux, Windows 7, Windows 10 and

Metasploitable environments. All environments except Windows 10 were virtual. Figure 2

shows a diagram of the proposed design and implementation.

Figure 2: Proposed design and implementation overview

3.1 Approach Design and Architecture

To construct a machine learning-based IDS, first, a dataset of packets (or traffic flows)

needed to be acquired. In this thesis, I generated two types of traffic: Malicious and Legitimate

(non-malicious) traffic with the objective of constructing a machine learning model to

distinguish between these types of traffic and detect the malicious ones.

3.1.1 Generating Malicious Traffic

The malicious traffic in this thesis is a series of packets sent to a targeted machine to

perform different types of reconnaissance attacks. To execute these attacks and generate the

malicious traffic, I used different malicious and popular tools. These tools are as follows:

1- Metasploit

21

2- Nmap

3- Nikto

These tools are all publicly available on Kali Linux, which is a virtual machine used for the

penetration testing of systems. The target machine was a virtual machine running Windows 7.

The first attack used Metasploit against Windows 7. The Metasploit framework is a

command line interface available in Kali Linux that is used for penetration testing. In the

Metasploit console, I used the module ‘auxiliary/scanner/portscan/syn’ against the target

machine, Windows 7. This module works by attempting to initiate Transmission Control

Protocol (TCP) connections with the target machine’s ports. TCP facilitates message exchanges

between devices that are connected to a network. Port scanning attempts to investigate a range

of ports on a target machine to determine if those ports are open or closed. Based on this

determination, certain exploits could then be used to attack the target machine using the open

ports that were found during the scan. Also during this module, a SYN packet is sent and if the

target machine replies with SYN/ACK packet, then the port is assumed to be open, and thus

possibly meaning it could be exploited. A SYN packet is generated when a machine attempts to

connect to another machine via TCP. When the SYN packet is received by the target machine,

the target machine sends a SYN/ACK packet back to the original machine. To gather the data

from this attack, I used Wireshark, which is a network packet capturing tool. I started

Wireshark, then ran the scanner/portscan/syn module in Metasploit, then stopped Wireshark and

saved the packet capture.

The next attack performed was an aggressive nmap scan. Nmap is network mapping tool

that can be used to discover services running on a target machine. Nmap can also find hosts that

are live and connected to a specific network. For this attack, I used the -A option to attack my

22

target. -A is an option available in nmap that aggressively scans a target machine. This option

enables operating system (OS) detection, version detection, script scanning, and traceroute. By

knowing what OS and version a target machine is running, an attacker can better curate exploits

for that machine. Script scans might detect vulnerabilities in certain services, malware, or

database information from a target machine. Aggressive scans provide more information than

regular nmap scans. The more information an attacker has, the better chance they might at a

successful exploit. To gather the data for this attack, I started Wireshark, ran the nmap scan,

then stopped Wireshark and saved the packet capture.

The next attack was a stealthy nmap scan. Stealthy scans usually bypass firewall or other

anti-virus detection mechanisms. I used the command ‘nmap - -stats-every 1m -sS -P0 -T sneaky

-p 1-100’ to generate this attack. The -sS flag denotes a syn scan, which is a quick and

unaggressive way to scan ports. When doing a syn scan, nmap can go undetected by most anti-

virus and firewalls because it does not fully connect to ports. The -P0 flag means that Nmap will

not ping the target system, which would open a connection and could be detectable by a firewall.

The -T flag denotes the speed of the scan, with 0 being the slowest and 5 being the fastest. The

faster a tool scans a target, the more likely it is to be detected by a firewall. For this experiment,

I chose a speed of 1 or ‘sneaky’ so that this scan would fall below the threshold of danger to an

intrusion detection system. Because I chose a much slower scan rate, I only scanned ports 1-100

to save time. To gather the data for this attack, I started Wireshark, ran the nmap scan, then

stopped Wireshark and saved the packet capture.

The last attack used Nikto. Nikto is a webserver vulnerability scanner. Nikto scans for

issues like dangerous files, outdated versions of software, and problems with software versions.

For the target, I used a VM running Metasploitable. Metasploitable is virtual machine that has

23

known, intentional vulnerabilities. Another tool available in Metasploitable is DVWA, which is

a vulnerable web application. I used the command nikto -h

http://192.168.182.135/dvwa/index.php. This is the default scan in nikto, which looks for

dangerous files, outdated software, and lists any known problems with versions running on a

webserver. To gather the data for this attack, I started Wireshark, ran the nmap scan, then

stopped Wireshark and saved the packet capture.

3.1.2 Generating Legitimate (Non-malicious) Traffic

With the objective of detecting reconnaissance attacks using machine learning, the

second part of data must contain legitimate traffic that is normally generated by the users to

browse the Internet, download files, stream videos, etc. For the generation of the non-malicious

traffic, I used the websites Google, Amazon and YouTube. I started Wireshark, searched for a

term on Google, and then stopped Wireshark. For Amazon, I used the same process, but

searched for a specific product on their website. For YouTube, I searched for a certain video and

then streamed 30 seconds of that video. Each example’s data was captured separately using

Wireshark.

3.1.2 Feature Extraction

 After the generated data was captured using WireShark, I used a tool to extract traffic

features from the data, Lucadivit Feature Extractor [11]. The feature extractor takes in pcap files,

the filetype generated by Wireshark, and extracts those files’ features. This feature extractor can

extract a total of 26 features from files. These features represent detailed specifics about a given

traffic flow such as the time between the first packet and the last packet in a given windown. All

26 features were used to classify the data points in both models. Table 4 shows a summary of the

features used in the classifiers.

24

Table 4: List of 26 features extracted from traffic flows and their description [11]

Feature Description
Avg_syn_flag The average of packets with syn flag active in

a window of packets.
Avg_urg_flag The average of packets with urg flag active in

a window of packets.
Avg_fin_flag The average of packets with fin flag active in

a window of packets.
Avg_ack_flag The average of packets with ack flag active in

a window of packets.
Avg_psh_flag The average of packets with psh flag active in

a window of packets.
Avg_rst_flag The average of packets with rst flag active in

a window of packets.
Avg_DNS_pkt: The average of DNS packets in a window of

packets.
Avg_TCP_pkt

The average of TCP packets in a window of
packets.

Avg_UDP_pkt

The average of UDP packets in a window of
packets.

Avg_ICMP_pkt The average of ICMP packets in a window of
packets.

Duration_window_flow

The time from the first packet to last packet in
a window of packets.

Avg_delta_time

The average of delta times in a window of
packets. Delta time is the time from a packet
to the next packet.

Min_delta_time: The minimum delta times in a window of
packets.

Max_delta_time: The maximum delta times in a window of
packets.

StDev_delta_time

The Standard Deviation of delta time in a
window of packets

Avg_pkts_lenght:

The average of packet lengths in a window of
packet.

Min_pkts_lenght

The minimum of packet lengths in a window
of packet.

Max_pkts_lenght

The maximum of packet lengths in a window
of packet.

StDev_pkts_lenght The standard deviation of packet lengths in a
window of packet.

Avg_small_payload_pkt:

The average of packet with a small payload.
A payload is considered small if his size is
lower than 32 Byte.

25

Avg_payload

The average of payload size in a window of
packets.

Min_payload

The minimum of payload size in a window of
packets.

Max_payload The maximum of payload size in a window of
packets.

StDev_payload

The standard deviation of payload size in a
window of packets.

Avg_DNS_over_TCP The average of ration DNS/TCP in a window
of packets.

Label 1-7 respectively if pcap is legitimate or
malware.

3.1.3 The Variance of the Features

Variance is a popular statistical measurement of the spread between numbers in the data.

This spread indicates a higher data quality in terms of machine learning. Machine learning

models tend to be accurate when the data has higher variance with spread numbers rather than

very similar numbers or near constants.

To measure the spread of numbers for the 25 features (without the label column), I calculated

the variance of these features. As shown in Figure 3, the top five features with the highest

variance in decending order were as follows:

1. max_payload

2. min_pkts_length

3. max_pkts_length

4. avg_pkts_length

5. avg_payload

26

Figure 3: Top 5 features extracted from traffic flows

For the machine learning models, we use all 25 features to construct the model. While

some of the features have low variance, the machine learning algorithms that we used, namely,

decision tree, and naïve bayes will reduce the weight and importance of these features if they do

not increase the accuracy of classification. This process is explained in details the next

subsection.

3.1.4 Constructing the Classification Model

In machine learning, classification is the process of having the model predict categories,

or labels, for a certain dataset. The model usually has testing and training data, which helps it to

correctly predict outcomes for datapoints.

The model construction process is often comprised by two steps:

1- Training: Training data is used to train the model on which datapoints go in a certain

category.

2- Testing: Testing data is used to test the model and see if it can correctly identify

which datapoints go in each category.

0
50000

100000
150000
200000
250000
300000
350000
400000

Top 5 Extracted Features

27

For the classification of the data, I used a Naïve-Bayesian classifier, and a Decision Tree

classifier. I chose these classifiers over other models because they are easy to implement and I

are models that I had the most experience implementing and using. Decision Tree and Naïve-

Bayesian classifiers also classify data differently, and I wanted 2 models that were not similar.

Decision Tree models classify data based on pre-defined features that the model selects, while

Naïve-Bayesian models have to be told which features to use to classify data. Classifiers use

algorithms to categorize data based on labels that the data is given, which trains the models to

correctly identify data. Classifiers work in two steps, with the first step being learning, and the

last step being predicting. In the learning step, a model is developed using sets of training data.

In the prediction step, the model is used to classify new data by using what it’s learned in the

first step. Naïve-Bayesian models work by using the Bayes Theorem. The Bayes Theorem uses

conditional probability to predict outcomes. Conditional probability is the probability that

something will happen, given that something else has already occurred. [12] Decision Tree

models work by using if-then-else rules to classify data. Table 5 describes each label used in the

classifier and it’s description.

Table 4: Top 5 features extracted from traffic flows

Label Description

1 This label denotes the data that was collected

during a Metasploit attack.

2 This label denotes the data that was collected

during an aggressive nmap scan.

3 This label denotes the data that was collected

during a stealthy nmap scan.

28

4 This label denotes the data that was collected

during a Nikto scan.

5 This label denotes the data that was collected

during an Amazon product search.

6 This label denotes the data that was collected

during a Google search.

7 This label denotes the data that was collected

during a Youtube video stream.

29

Chapter 4. Evaluation

4.1 Supervised Learning

The final step in this thesis is to construct a machine learning model to classify the

generated traffic into either a reconnaissance attempt or legitimate traffic. For this step, I trained

two models using the following machine learning algorithms:

•Decision Tree (DT).

•Naïve Bayes (NB).

I constructed each machine learning model using the three features extracted from each traffic

flow, namely, the duration window flow, the average delta time, and the standard deviation delta

time. The data was split into 80% and 20%. The 80% portion of data was used for training and

20% part was used for the testing part.

For both the Decision Tree and the Naïve-Bayesian classifiers, supervised learning

methods were used in both algorithms.

4.2 Precision, Recall, and F score

Both models had output in the form of a confusion matrix, which shows a visualization of

specific model’s performance. Other indicators of a model’s performance are precision, recall

and F-score. The primitive accuracy measures that were used in this evaluation were True

Postive (TP), True Negative (TN), False Positive (FP), False Negative (FN).

True positives tell how many times the classifier correctly identified a positive case. True

negatives tell how many times the classifier correctly identified a negative case. False positives

tell how many times the classifier identified a negative result as positive. False negatives tell

how many times the classifier identified a positive result as negative.

30

4.2.1 Recall

Recall (R) is the number of samples that were correctly predicted as positive by the

classifier. Recall can be calculated with the following formula:

R = TP / (TP + FN)

4.2.2 Precision

Precision (P) is the number of positive classifications in the True Positive class that were

actually positive. Precision can be calculated with the following formula:

P = TP / (TP + FP)

4.2.3 F-score

F-score combines precision and recall by showing the mean of each measurement

combined; F-score can be calculated with the following formula:

𝐅𝐅 = 𝟐𝟐 ×
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 ∗ 𝐑𝐑𝐏𝐏𝐏𝐏𝐑𝐑𝐑𝐑𝐑𝐑
𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 + 𝐑𝐑𝐏𝐏𝐏𝐏𝐑𝐑𝐑𝐑𝐑𝐑

4.3 Experimental Results

As previously mentioned, I used 2 classifiers in my experiment which were a Decision

Tree classifier and Naïve-Bayesian classifier. Two datasets were given to the classifiers, with

the first dataset having 2 labels, malicious and non-malicious traffic. The second dataset had

separate labels for each of the generated traffic types, Metasploit, nmap -aggressive, nmap -

stealth, nikto, Amazon, Google, and YouTube. For the first experiment, the Decision Tree

classifier had an average precision of 99% and an average recall of 99%. The Naïve-Bayesian

classifier had an average precision of 98% and an average recall of 98%. For the second

experiment, the Decision Tree classifier had an average precision of 90%, and an average recall

31

of 84%. The Naïve-Bayesian classifier had an average precision of 82%, and an average recall

of 84%. Figures 3 and 4 show the precision and recall results of the Decision Tree classifier and

the Naïve-Bayesian classifier.

Figure 4: Precision Results

Figure 5: Recall Results

32

Figure 3: F-Score Decision Tree Results

Figure 4: F-Score Naïve-Bayesian Results

0

10

20

30

40

50

60

70

80

90

100

Metasploit Nmap -A Nmap -sS Nikto Amazon Google Youtube

F-Score Decision Tree

0

10

20

30

40

50

60

70

80

90

100

Metasploit Nmap -A Nmap -sS Nikto Amazon Google Youtube

F-Score Naive-Bayesian

33

4.4 Discussion

Precision and recall are two measures of performance for a machine learning model.

Precision is the number of positive samples that were identified correctly, and recall is the

number of samples that were correctly predicted as positive by the classifier. Precision is the

percentage of traffic that was flagged as malicious that was correctly classified as malicious.

Recall is the percentage of malicious traffic that was correctly identified.

One notable result of both models is label 3, which was a Nmap stealth attack. Nmap

stealth attacks perform scans of a target by slowing scanning each port in a system, which makes

the attack drop below the threshold of detection in a firewall or other intrusion detection system.

For precision, a Decision Tree classifier will be a better choice because it has a higher detection

rate for malicious traffic. For recall, a Naïve-Bayesian classifier will be a better choice, because

it has a better detection rate for malicious traffic.

34

Chapter 5. Conclusion

This thesis proposed an end-to-end approach to automatically detect malicious traffic

from non-malicious traffic. Attackers perform reconnaissance on targets, and these

reconnaissance phases allow the attacker to discover vulnerabilities about a system that can later

be used to exploit an organization. By collecting network traffic of certain reconnaissance

attacks and extracting features from those network captures, a machine learned model can then

be trained to correctly identify what legitimate traffic looks like in comparison to illegitimate

traffic.

5.1 Future Work

 The classification framework presented here is only a starting point for additional

research and analysis on identifying malicious vs. non-malicious traffic. One avenue for future

work might be to use more reconnaissance tools in the experiments. This would help to build

machine learning models that are more comprehensive than the current models. Another avenue

for future work might be to use deep learning models, like convolution neural networks, which

would also allow for a more comprehensive model. One last avenue for future work might be to

gain the permission needed to test the reconnaissance attacks in a non-virtual, live environment.

This would help to provide a more comprehensive evaluation and comparison of the machine

learning models.

35

REFERENCES

[1] S. F. Y Reich, "The Formation and Use of Abstract Concepts in Design," Concept
Formation, pp. 323-353, 1991.

[2] X. Wu, "The Top 10 Algorithims in Data Mining," Knowledge Information
Systems, vol. 14, no. 1, pp. 1-37, 2008.

[3] J. L. C. L. J Haung, "Comparing Naive Bayes, Decision Treesm and SVM with
AUC and Accuracy," 2003.

[4] Y. L. R.D.S Raizada, "Smoothness without Smoothing: Why Gaussian naive
Bayes Is Not Naive for Multi-Subject Searchlight Studies," PLoS One, vol. 8, no.
7, 2013.

[5] N. House, "Nmap Cheat Sheet," StationX, 1 May 2020. [Online]. Available:

 https://www.stationx.net/nmap-cheat-sheet/ .

[6] Sullo, "Nikto Cheat Sheet," CompariTech, [Online]. Available:

https://cdn.comparitech.com/wp-content/uploads/2019/07/NIkto-Cheat-Sheet.pdf .

[7] W. Fang, X. Tan and D. Wilbur, "Application of Intrusion Detection Technology
in Netowork Safety Based on Machine Learning," 2020.

[8] S. Al-Eidi, O. Darwish, Y. Chen and G. Husari, "SnapCatch: Automatic Detection
of Covert Timing Channels Using Image Processing and Machine Learning," in
IEEE, 2020.

[9] C. S. T. L. Blake Anderson, "Improving Malware Classification: Bridging the
Static/Dynamic Gap," in ACM, 2012.

[10] J. M. Taeshik Shon, "A hybrid machine learning approach to network anomaly
detection," in Science Direct, 2007.

[11] L. D. Vita. [Online]. Available: https://github.com/lucadivit/Pcap_Features_Extraction.

[12] O. H. Ojone, "Analysing Datasets Using Naive Bayes Classifier," 26 April 2021. [Online].

Available: https://dev.to/codinghappinessweb/analysing-dataset-using-naive-bayes-

classifier-3d7o. [Accessed 2022].

[13] K. Katterjohn, "TCP SYN Port Scanner - Metasploit," [Online]. Available:

36

https://www.infosecmatter.com/metasploit-module-library/?mm=

auxiliary/scanner/portscan/syn. [Accessed 2022].

[14] J. Peters, "How to Use Nmap: Commands and Tutorial Guide," [Online].

Available: https://www.varonis.com/blog/nmap-commands. [Accessed 2022].

[15] M. Shivanandhan, "Nmap — A Guide To The Greatest Scanning Tool Of All Time," [Online].

Available: https://www.hardcoder.io/nmap-a-guide-to-the-greatest-scanning-tool-of-all-time

/#:~:text=Aggressive%20Scanning,to%20perform%20an%20aggressive%20scan.

&text=Aggressive%20scans%20provide%20far%20better%20information%20than

%20regular%20scans. [Accessed 2022].

[16] N. Authors, "The Phases of an Nmap Scan," [Online]. Available:

 https://nmap.org/book/nmap-phases.html#:~:text=Script%20scanning.&text=

They%20commonly%20perform%20tasks%20such,services%2C%20and%20

advanced%20version%20detection. [Accessed 2022].

[17] Y. Said, "Performing Stealth Scans with Nmap," [Online]. Available:

https://linuxhint.com/stealth_scans_nmap/. [Accessed 2022].

[18] M. Bintahin, "What is Nikto Tool in Kali and how to use it?," [Online]. Available:

https://cyber-today.com/what-is-nikto-tool-in-kali-and-how-to-use-it/. [Accessed 2022].

[19] R. Saxena, "HOW THE NAIVE BAYES CLASSIFIER WORKS IN MACHINE
LEARNING," [Online]. Available: https://dataaspirant.com/naive-bayes-classifier-
machine-
learning/#:~:text=Naive%20Bayes%20is%20a%20kind,as%20the%20most%20likely

%20class. [Accessed 2022].

[20] C. Sehra, "Decision Trees Explained Easily," [Online]. Available: https://chirag-
sehra.medium.com/decision-trees-explained-easily-28f23241248. [Accessed 2022].

[21] I. C. Education, "Supervised Learning," [Online]. Available:
https://www.ibm.com/cloud/learn/supervised-learning#toc-how-superv-
A-QjXQz-.

[22] N. Authors, "TCP SYN (Stealth) Scan (-sS)," [Online]. Available:

37

https://
nmap.org/book/synscan.html#:~:text=SYN%20scan%20may%20be%20requested

,%2C%20%2DsS%20is%20usually%20omitted. [Accessed 2022].

38

VITA

RACHEL BAKALETZ

Education: M.S. Computing, East Tennessee State University, Johnson

 City, Tennessee, 2022

B.S. Computing, East Tennessee State University, Johnson City,

Tennessee, 2020

	A Machine Learning Approach for Reconnaissance Detection to Enhance Network Security
	Recommended Citation

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1. Introduction
	1.1 Cyber Reconnaissance Attack Phase
	1.2 Malicious Traffic Flow
	1.3 Virtual Machines
	1.3.1 Kali Linux
	1.3.1 Metasploitable
	1.3.3 DVWA

	1.4 Machine Learning
	1.4.1 Decision Tree
	1.4.2 Naïve Bayes

	1.4 Remaining Organization of Thesis
	2.1 Background
	2.1.1 Aggressive Scanning
	2.1.2 Stealth Scanning
	2.1.3 NMAP
	2.1.4 Nikto
	2.1.5 Metasploit

	2.2 Literature Review
	3.1 Approach Design and Architecture
	3.1.1 Generating Malicious Traffic
	3.1.2 Generating Legitimate (Non-malicious) Traffic
	3.1.2 Feature Extraction
	3.1.3 The Variance of the Features
	3.1.4 Constructing the Classification Model

	Chapter 4. Evaluation
	4.1 Supervised Learning
	4.2 Precision, Recall, and F score
	4.2.1 Recall
	4.2.2 Precision
	4.2.3 F-score

	4.3 Experimental Results
	4.4 Discussion

	Chapter 5. Conclusion
	5.1 Future Work

	REFERENCES
	VITA

