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Abstract

Salmonella Typhi is the primary causative agent of typhoid fever; an acute systemic infec-

tion that leads to chronic carriage in 3–5% of individuals. Chronic carriers are asymptomatic,

difficult to treat and serve as reservoirs for typhoid outbreaks. Understanding the factors

that contribute to chronic carriage is key to development of novel therapies to effectively

resolve typhoid fever. Herein, although we observed no distinct clustering of chronic car-

riage isolates via phylogenetic analysis, we demonstrated that chronic isolates were pheno-

typically distinct from acute infection isolates. Chronic carriage isolates formed significantly

thicker biofilms with greater biomass that correlated with significantly higher relative levels

of extracellular DNA (eDNA) and DNABII proteins than biofilms formed by acute infection

isolates. Importantly, extracellular DNABII proteins include integration host factor (IHF) and

histone-like protein (HU) that are critical to the structural integrity of bacterial biofilms. In this

study, we demonstrated that the biofilm formed by a chronic carriage isolate in vitro, was

susceptible to disruption by a specific antibody against DNABII proteins, a successful first

step in the development of a therapeutic to resolve chronic carriage.

Author summary

Salmonella Typhi, a human restricted pathogen is the primary etiologic agent of typhoid

fever, an acute systemic infection that has a global incidence of 21 million cases annually.

Although the acute infection is resolved by antibiotics, 3–5% of individuals develop
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chronic carriage that is difficult to resolve with antibiotics. A majority of these indivuals

serve as reservoirs for further spread of the disease. Understanding the differences

between acute and chronic carrier strains is key to design novel targeted approaches to

undermine carriage. Here, we demonstrated that chronic carrier strains although not

genotypically distinct from acute strains, formed thicker biofilms with greater relative lev-

els of extracellular eDNA and DNABII proteins than those formed by acute infection iso-

lates. We also demonstrated that an antibody against DNABII proteins significantly

disrupted biofilms formed by a chronic carrier strain and therefore supported develop-

ment of therapeutic use of this antibody to attenuate chronic carriage.

Introduction

Salmonella enterica is a facultative intracellular, Gram-negative gammaproteobacterium,

which is classified into six subspecies that are further subtyped into more than 2000 serovars

or serotypes based on the expression of surface antigens [1,2]. In humans, S. enterica serovars

cause non-typhoidal [3] and typhoidal [4] illness that results in significant morbidity and mor-

tality worldwide. Non-typhoidal S. enterica causes gastroenteritis with a global burden of 93

million cases and 155,000 deaths annually [5]. Salmonella enterica serovar Typhi (S. Typhi) is a

human-restricted pathogen and the primary etiologic agent of typhoid fever with an incidence

of 21 million cases each year that results in 200,000 deaths annually [6].

Enteric or typhoid fever is an acute systemic infection that is commonly caused by poor

sanitation and the consumption of contaminated food or water [7]. Although acute infections

are resolved by treatment with antibiotics, a high incidence of antibiotic resistance with about

60% of strains that exhibit multidrug resistance, exacerbates the morbidity and mortality, par-

ticularly, within typhoid endemic regions [8]. Most importantly, 3–5% of the individuals with

an acute infection ultimately develop chronic asymptomatic carriage in the gallbladder [9].

This chronic carriage state not only serves as a reservoir for further spread of the disease via

bacterial shedding in feces, but is also difficult to resolve with antibiotics [10–13]. Given the

grave public health concern of both acute infections and chronic carriage of S. Typhi, it is

important to understand the development of each of these states to design and test targeted

approaches to resolve the more recalcitrant chronic carriage.

The hallmark of chronic carriage of S. Typhi is the successful colonization of the gallbladder

and biofilm formation on the surface of gallstones [14,15]. Biofilms are organized three-

dimensional multicellular communities encased in self-produced extracellular polymeric sub-

stances (EPS) that is comprised of polysaccharides, extracellular DNA [eDNA], proteins and

lipids [16,17]. Biofilm formation on the surface of gallstones is thought to protect the resident

bacteria from the harsh environment within the gallbladder (e.g. presence of bile), host

immune effectors, and antibiotics [18]. Although the negative impact of the chronic carriage

state on human health has been recognized for over a century, very little is known about the

genotypic and phenotypic differences between acute infection and chronic carriage isolates of

S. Typhi.

In order to better characterize the differences in phenotypic and genotypic characteristics

of acute infection and chronic carriage isolates of S. Typhi, in this study, we sequenced a lab

strain S. Typhi Ty2 (JSG698), and multiple acute infection (14 isolates from patients with an

acute infection) and chronic carriage isolates (6 isolates from chronic carriers). We also exam-

ined the ability of each of these isolates to form biofilms in vitro (as biofilm formation is a hall-

mark of chronic carriage) and compared the relative levels of multiple EPS components
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(eDNA, DNABII proteins and lipopolysaccharides [19,20]) within their respective biofilms to

determine if these correlated with differences in the magnitude of the biofilms formed. Per-

haps most importantly, we have also shown that S. Typhi biofilms, similar to those formed by

22 single and multi-species bacterial biofilms, incorporate DNABII proteins that stabilize the

eDNA lattice-like structure [21–24]. Sequestration of DNABII proteins from bacterial biofilm

via specific antibodies, results in collapse of the EPS which causes release of biofilm-resident

bacteria that are highly sensitive to antibiotics and immune factors [21,22,25–30].

In this study, we demonstrated that chronic carriage isolates formed thicker biofilms than

acute infection isolates and further, that of those components tested, the increase in biofilm

formation by chronic carriage isolates correlated only with greater steady state levels of eDNA

and DNABII proteins within the biofilm EPS. Overall, these data suggested that during car-

riage, chronic S. Typhi isolates may undergo pathoadaptation in the gallbladder for enhanced

biofilm capabilities. Indeed, we also demonstrated that we could disrupt biofilms formed by

chronic carriage isolates with a specific antibody that targets the DNABII proteins which

thereby supported development of therapeutic use of this antiserum to potentially attenuate

the chronic carriage of S. Typhi.

Results

Molecular and genetic typing of acute and chronic S. Typhi strains

To infer the phylogenetic relationship of acute and chronic S. Typhi isolates from Ohio,

Mexico City, and Vietnam (Table 1), we determined the whole-genome sequence using short

read sequence technology. A total of 1,777 single nucleotide polymorphisms in the core

genome with reference to S. Typhi Ty2 (AE014613) were used to construct a maximum-likeli-

hood phylogenetic tree (Fig 1A) in the context of 1909 global S. Typhi isolates reported previ-

ously [31]. The study isolates were widely distributed within the global diversity of S. Typhi

and ten isolates were of the H58 haplotype that constitute the currently dominant global pan-

demic clade [32]. Clinical isolates displayed high genetic similarity with multiple clades formed

(Fig 1B), with pairwise distance ranging from 1 to 548 SNPs in the core genome (Fig 1C).

However, there was no apparent clustering of the sequenced isolates by the acute versus
chronic infection status of the patient.

Chronic carrier isolates of S. Typhi formed thicker biofilms than acute

infection isolates

To identify any phenotypic alterations between S. Typhi strains isolated from acute and

chronic infections, we first set out to determine the differences in biofilms formed in vitro by

each of these strains. This is relevant as chronic carriage of S. Typhi is associated with biofilm

formation on the surface of gallstones [14,15]. We first characterized the differences in growth

of each of the S. Typhi strains and observed that the chronic carriage isolates (JSG3983 and

JSG3984) had a significantly longer doubling time than S. Typhi Ty2 strain JSG698 (S1 Fig

and Table 2). Of the these two strains only JSG3984 eventually matched the extent of growth

of S. Typhi Ty2 strain. Due to these two growth defects, JSG3983 was therefore the only strain

eliminated from our comparative analysis. Next, we allowed various S. Typhi chronic carriage

and acute infection isolates and the lab strains S. Typhi Ty2 (JSG698 and JSG4383) (Table 1)

to form biofilms in vitro. Since the lab strain S. Typhi Ty2 (JSG698) is deficient in rpoS, a

known regulator of stationary phase gene expression, an otherwise isogenic rpoS+ strain

(JSG4383 [33]) was also employed. First, no significant difference in biofilm formation

between the S. Typhi Ty2 (JSG698) and the S. Typhi Ty2 rpoS+ strain (JSG4383) was observed
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as evidenced by biofilm average thickness (Fig 2A) and biofilm biomass (Fig 2B). This result

suggested that the lack of rpoS had no significant effect on biofilm formation by the S. Typhi

Ty2 strain JSG698.

As shown in Fig 2, when grossly assessed, while 5 out of the 6 chronic carriage isolates

(83%) formed significantly thicker biofilms as compared to the lab strain S. Typhi Ty2

(JSG698), only 2 out of the 14 acute infection isolates (14%) formed significantly thicker bio-

films as compared to lab strain. Next, we determined the average thickness and biomass of bio-

films formed by chronic (indicated by the red dotted line labeled AC) versus and acute

infection isolates (indicated by the blue dotted line labeled AA). In general, chronic carriage

isolates formed significantly thicker biofilms (P<0.01) with greater biomass (P<0.01) com-

pared to those formed by acute infection isolates (Fig 2). To further validate our confocal

microscopy-based analyses, we enumerated the bacteria within each biofilm (adherent state)

and demonstrated that in biofilms formed by chronic carriage isolates, on average 52.5% of the

Table 1. Strains used in this study.

Laboratory strains

Strain Characteristics Source

JSG698 S. Typhi Ty2; wild-type ATCC

JSG4383 S. Typhi Ty2 rpoS+ [35]

JSG1213 S. Typhi Ty2 tviB::Kan Gift of Popoff lab, Pasteur Institute [34]

JSG210 S. Typhimurium 14028s; wild-type ATCC

Clinical Isolates

Strain Isolation source/characteristics Infection type Country of origin Source

JSG691 (ICOPHAI17078) Blood Acute USA University of Texas Health Science Center at San Antonio

JSG3074 (ICOPHAI17076) Gallstone Chronic Mexico General Hospital of Mexico, Mexico City

JSG4123 JSG3074 ΔtviB via Wanner NA NA This study

JSG3076 (ICOPHAI17077) Gallstone Chronic Mexico General Hospital of Mexico, Mexico City

JSG3395 (ICOPHAI17081) Blood Acute USA Ohio Department of Health

JSG3400 (ICOPHAI17086) Bile Acute USA Ohio Department of Health

JSG3407 (ICOPHAI17082) Stool Acute USA Ohio Department of Health

JSG3418 (ICOPHAI17085) Stool Acute USA Ohio Department of Health

JSG3419 (ICOPHAI17083) Blood Acute USA Ohio Department of Health

JSG3431 (ICOPHAI17084) Stool Acute USA Ohio Department of Health

JSG3433 (ICOPHAI17079) Blood Acute USA Ohio Department of Health

JSG3441 (ICOPHAI17080) Stool Acute USA Ohio Department of Health

JSG3979 (GB169) Gallbladder Chronic Vietnam Gift of S. Baker

JSG3980 (GB281) Gallbladder Chronic Vietnam Gift of S. Baker

JSG3981 (GB31) Gallbladder Chronic Vietnam Gift of S. Baker

JSG3982 (GB335) Gallbladder Chronic Vietnam Gift of S. Baker

JSG3983 (GB266) Gallbladder Chronic Vietnam Gift of S. Baker

JSG3984 (GB26) Gallbladder Chronic Vietnam Gift of S. Baker

JSG3985 (TY421) Unspecified Acute Vietnam Gift of S. Baker

JSG3986 (TY312) Unspecified Acute Vietnam Gift of S. Baker

JSG3987 (TY311) Unspecified Acute Vietnam Gift of S. Baker

JSG3988 (TY102) Unspecified Acute Vietnam Gift of S. Baker

JSG3989 (TY261) Unspecified Acute Vietnam Gift of S. Baker

JSG3990 (TY96) Unspecified Acute Vietnam Gift of S. Baker

NA = Not applicable.

https://doi.org/10.1371/journal.ppat.1009209.t001
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total bacteria were in the biofilm state, whereas this value was 26.8% for biofilms formed by

acute infection isolates (S2 Fig). These data were consistent with our analysis derived via con-

focal microscopy and collectively suggested that chronic carriage isolates were significantly dif-

ferent from acute infection isolates in their relative ability form biofilms, in vitro.

Chronic carriage isolates yielded higher steady state levels of eDNA and

DNABII proteins within their biofilm EPS compared to those formed by

acute infection isolates

Given that chronic carriage isolates formed a thicker biofilm with greater biomass as compared

to those formed by acute infection isolates, we examined the steady state levels of various EPS

components within S. Typhi biofilms to correlate with the differences in biofilm architecture

observed between chronic carriage and acute infection isolates. S. Typhi whole cells (WC;

extracellular) or cell lysates (Ly) were blotted on PVDF membranes and probed with either α-

Vi-antigen (S3A Fig) or α-O9 O-antigen of the LPS (S3B Fig) antibodies. As shown in S4 Fig,

Fig 1. Phylogenetic relationship of S. Typhi isolates. (A) Maximum likelihood phylogenetic tree based on core

genome sequence variation. This shows the relationship of S. Typhi strains used in this study in the context of a global

collection of S. Typhi strains reported in (31). (B) Maximum likelihood phylogenetic tree showing the relationship of

S. Typhi clinical isolates and S. Typhi Ty2 based on core genome sequence variation. (C) Single nucleotide

polymorphism distance matrix and heatmap of isolates in this study. There was no apparent clustering of the

sequenced isolates by the acute versus chronic infection status of the patient.

https://doi.org/10.1371/journal.ppat.1009209.g001
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while Vi-antigen was variably expressed by both chronic carriage and acute infection isolates,

no characteristic pattern of expression was observed for either group (S3A Fig). S. Typhimur-

ium strain 14028s and S. Typhi tviB::Kan [34] served as negative controls. O9 antigen was

below the level of detection in WC blots of multiple chronic carriage and acute infection iso-

lates. Additionally, no apparent difference in the expression of O9 antigen was observed

between chronic carriage and acute infection isolates (S3B Fig). S. Typhimurium strain 14028s

served as a negative control in these latter blots. These data suggested that chronic carriage iso-

lates had no discernible pattern of differences from acute infection isolates with respect to the

expression of either O9 antigen or Vi-antigen.

Next, we quantified the relative extracellular levels of eDNA and DNABII proteins within

the biofilms formed by the indicated S. Typhi strains. We allowed biofilms to be formed by

each strain for 40 hours, then incubated the biofilms with α-dsDNA monoclonal antibody and

α-IHFEc (recognizes both IHF and HU isolated from a large crossection of bacterial species;

also the primary amino acid sequences of IHF and HU from E. coli and Salmonella are identi-

cal) to visualize both eDNA and DNABII proteins within the biofilm EPS by immunofluores-

cence microscopy (IF). The bacterial membrane stain, FM 4–64 was used to designate the

overall biofilm architecture. The distribution of eDNA (teal) and DNABII proteins (purple)

within the biofilm EPS of representative chronic carriage (JSG3980) and acute infection

(JSG3986) isolates compared to lab strain S. Typhi Ty2 (JSG698) is shown in Fig 3A. The fluo-

rescence intensity of eDNA (Fig 3B) and DNABII proteins (Fig 3D) were quantified, and the

average fluorescence intensity of eDNA and DNABII proteins within the EPS of biofilms

Table 2. Doubling time in hours for each of the indicated S. Typhi strains.

Strain Doubling time (hours)

S. Typhi Ty2 (JSG698) 1.19 ± 0.01

JSG3395 1.14 ± 0.01

JSG3407 1.21 ± 0.01

JSG3418 1.20 ± 0.01

JSG3419 1.20 ± 0.01

JSG3431 1.23 ± 0.02

JSG3433 1.16 ± 0.02

JSG3441 1.17 ± 0.01

JSG3985 1.21 ± 0.004

JSG3986 1.24 ± 0.01

JSG3987 1.26 ± 0.01

JSG3988 1.24 ± 0.004

JSG3989 1.15 ± 0.01

JSG3990 1.20 ± 0.01

JSG3074 1.21 ± 0.005

JSG3979 1.20 ± 0.02

JSG3980 1.25 ± 0.02

JSG3981 1.19 ± 0.01

JSG3982 1.23 ± 0.01

JSG3983 1.36 ± 0.02 ����

JSG3984 1.33 ± 0.02 ����

Statistical significance of doubling times for each of the chronic carriage or acute infection strain versus the S. Typhi

Ty2 strain, JSG698 was assessed by a one-way ANOVA followed by Dunnett’s multiple comparison test.

����P<0.0001.

https://doi.org/10.1371/journal.ppat.1009209.t002
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formed by acute infection and chronic carriage isolates was represented by the blue and red

dotted lines labeled AA and AC respectively. As shown in Fig 3B and 3D, on average, chronic

carriage isolates had significantly higher steady state levels of both eDNA (P<0.01) and DNA-

BII proteins (P<0.01) within their biofilm EPS as compared to acute infection isolates. How-

ever, despite the greater absolute abundance of eDNA and DNABII proteins within biofilms

formed by chronic carriage isolates, the relative abundance of eDNA and DNABII proteins [as

determined by the ratio of fluorescence intensity of eDNA or DNABII proteins to the fluores-

cence intensity of bacteria] was not different (see dotted lines AC and AA in Fig 3C and 3E).

Thus, regardless of biofilm size, the ratio of eDNA and DNABII to the number of cells in

the biofilm remains constant. This result suggested that in order for biofilms to incorporate

bacterial cells they are rate limited by constant ratios of eDNA and DNABII i.e. the more

eDNA and DNABII present within the biofilms, the more bacteria they can incorporate. Col-

lectively, these data suggested that while chronic carriage and acute infection isolates did not

have a discernible difference in expression of either LPS or Vi-antigen, the relative amount of

eDNA and DNABII proteins were significantly greater within biofilms formed by chronic car-

riage isolates than that within the biofilms formed by acute infection isolates due to the pres-

ence of more bacteria.

Biofilms formed by S. Typhi were disrupted upon incubation with a

DNABII-specific antibody

DNABII proteins serve as linchpin proteins to stabilize the eDNA lattice structure and in turn,

sequestration of DNABII proteins from the biofilm EPS with specific antibodies results in sig-

nificant disruption of single and multi-species biofilms in vitro, ex vivo and in vivo [21,22,24–

27,29,30,35–37]. Accordingly, we hypothesized that the greater the steady state levels of DNA-

BII proteins present within a biofilm, the greater the dose of DNABII-directed antibodies that

would be required for biofilm disruption. Since biofilms formed by chronic carriage isolates

Fig 2. Chronic carriage isolates formed thicker biofilms than acute isolates. Biofilms of each of the indicated S.

Typhi strains were established in a 8-well chambered coverglass slide for 40 hours. Biofilms were stained with LIVE/

DEAD stain and visualized via CLSM. Images were analyzed by COMSTAT to calculate average thickness (A) and

biomass (B). Bars represent the standard error of the mean (SEM). The mean of the average thickness or biomass of

the chronic carriage isolates was represented by the red dotted line labeled AC and the mean of the average thickness

or biomass of the acute isolates was represented by the blue dotted line labeled AA. Statistical significance of average

thickness or biomass of each of the strains versus the the lab strain, S. Typhi Ty2 (JSG698), was assessed by a one-way

ANOVA followed by Dunnett’s multiple comparison test. Statistical significance between AC and AA were assessed by

a one-way ANOVA followed by Tukey’s multiple comparison test. �P<0.05, ��P<0.01, ���P<0.001, ����P<0.0001. On

average, chronic carriage isolates formed a thicker biofilm with more biomass than acute isolates. Chronic carriage

isolates are indicated in red and acute infection isolates are indicated in blue.

https://doi.org/10.1371/journal.ppat.1009209.g002
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had a greater amount of DNABII proteins, here we wanted to determine if these could none-

theless be disrupted with specific antibodies. To this end, we allowed the lab strain S. Typhi

Ty2 (JSG698) and the chronic carriage isolate (JSG3074; used here as a representative bacte-

rium) to form biofilms for 24 hours, then incubated these biofilms with α-IHFEc, for 16 hours.

Naive IgG was used as a negative control. As shown in Fig 4, biofilms formed by both the lab

strain and the chronic carriage isolate were significantly disrupted by α-IHFEc (significant

decrease in biomass as compared to naive IgG), although as hypothesized, a greater

Fig 3. Chronic carriage isolates have higher steady levels of extracellular DNA and DNABII proteins within their

biofilm EPS than acute isolates. Biofilms of each of the indicated S. Typhi strains were established in an 8-well

chambered coverglass slide for 40 hours. Biofilms were labeled with α-dsDNA monoclonal antibody, α-IHFEc and FM

4–64 and visualized via CLSM. (A) Representative immunofluorescence images of a lab wild type strain S. Typhi Ty2

(JSG698), chronic carriage isolate (JSG3980) and acute isolate (JSG3986). eDNA is visualized in teal and DNABII

proteins in purple. Images were analyzed by ImageJ to quantify the fluorescence intensity of eDNA (B), DNABII

proteins (D), and bacteria. Fluorescence intensity of eDNA and DNABII proteins were normalized to cells and plotted

in (C) and (E), respectively. Bars represent the SEM. AA and AC represent the averages of acute infection isolates and

chronic carriage isolates, respectively. Statistical significance between AC and AA were assessed by a one-way ANOVA

followed by Tukey’s multiple comparison test. ��P<0.01. On average, chronic carriage isolates had higher steady state

levels of both eDNA and DNABII proteins within the biofilm EPS as compared to acute isolates. Chronic carriage

isolates are indicated in red and acute infection isolates are indicated in blue.

https://doi.org/10.1371/journal.ppat.1009209.g003

PLOS PATHOGENS Comparative analysis of Salmonella strains

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009209 January 19, 2021 8 / 18

https://doi.org/10.1371/journal.ppat.1009209.g003
https://doi.org/10.1371/journal.ppat.1009209


concentration of α-IHFEc was required to achieve a similar effect in the biofilm formed by the

chronic carriage isolate as that observed for the lab strain. This requirement for a greater con-

centration of α-IHFEc for biofilm disruption was consistent with the presence of higher steady

state levels of DNABII proteins within biofilm EPS of the chronic carriage isolate as compared

to the lab strain (Fig 3).

Since S. Typhi attaches to gallstones (that primarily consists of cholesterol) and encounters

bile in the gallbladder during establishment of a chronic carriage state, and that bile induces

biofilm formation of S. Typhi [15], we also determined the efficacy of biofilm disruption by α-

IHFEc in the presence of cholesterol or bile. Biofilms formed by S. Typhi Ty2 strain were dis-

rupted by α-IHFEc as observed by a significant reduction in biofilm biomass as compared to

naive IgG in the presence of either cholesterol (chambered coverglass slide was coated with

cholesterol to mimic the surface of gallstones) or 0.5% bile (Fig 4B and 4C). Although bile sig-

nificantly increased the biomass within the biofilms formed by the lab strain with a concomi-

tant increase in the expression of DNABII proteins both intracellularly (S4A Fig) as well as

that incorporated within the biofilm EPS (S4B and S4C Fig), a greater concentration of α-

IHFEc (500 μg/ml) nevertheless disrupted biofilms formed under conditions designed to

mimic those within the gallbladder. Collectively, these results suggested that the biofilms

formed by chronic carriage isolates were susceptible to disruption by α-IHFEc in vitro (albeit at

a higher α-IHFEc concentration), an essential first step to develop these antibodies as a thera-

peutic that can potentially resolve chronic carriage of S. Typhi.

Discussion

The chronic carriage state of S. Typhi is difficult to treat and these individuals also serve as res-

ervoirs that can cause community outbreaks of typhoid fever. A more comprehensive charac-

terization of the differences between acute infection and chronic carriage isolates is critical in

order to understand the development of the chronic carriage state and design novel, specific

targeted approaches to undermine carriage.

Fig 4. DNABII-specific antibody disrupted biofilms formed by chronic carriage isolate of S. Typhi. (A) Biofilms

formed by lab wild type strain S. Typhi Ty2 (JSG698) or chronic carriage isolate (JSG3074) or (B, C) JSG698 were

established in an 8-well chambered coverglass slide in TSB (A), chambered coverglass slide coated with 5 mg/ml

cholesterol (B), or TSB+0.5% ox bile extract (C) for 24 hours. Biofilms were incubated with medium alone, naive IgG,

or α-IHFEc IgG at the indicated concentration for 16 hours. Biofilms were stained with LIVE/DEAD stain and

visualized via CLSM. Images were analyzed by COMSTAT to calculate biomass. Bars represent the SEM. ��P<0.01,
���P<0.001 via unpaired t test. Biofilms formed by S. Typhi Ty2 (JSG698) in the presence of cholesterol and bile, as

well as a chronic carriage isolate of S. Typhi, were significantly disrupted by DNABII-specific antibody (α-IHFEc).

https://doi.org/10.1371/journal.ppat.1009209.g004

PLOS PATHOGENS Comparative analysis of Salmonella strains

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009209 January 19, 2021 9 / 18

https://doi.org/10.1371/journal.ppat.1009209.g004
https://doi.org/10.1371/journal.ppat.1009209


In this study, we first characterized the genotypic and phenotypic differences between acute

infection and chronic carriage isolates of S. Typhi and demonstrated that each of these strains

were widely distributed within the global diversity of S. Typhi strains with no evident cluster-

ing. Although large-scale rearrangements between ribosomal RNA operons have been docu-

mented in longitudinal isolates of an S. Typhi strain from a chronic carrier [38], our sequence

analysis of multiple acute infection and chronic carriage isolates from various geographical

locations suggested no distinct clustering of strains based on the chronic carrier versus acute

infection status of the patient. Previous genome sequence comparison analysis of longitudinal

isolates of persistent S. Typhimurium revealed several SNPs in global virulence regulatory

genes such as rpoS, dksA, melR etc., that can cause pleiotropic changes in the transcription of

genes during persistence [39]. Also, acquisition of mobile genetic elements has been docu-

mented during persistence that is directly attributed to the antibiotic resistant phenotype of

chronic carriage isolates [38]. Thus, while in our study clustering of the acute infection versus

chronic isolates does not occur, genetic events do occur in the gallbladder environment that

likely affect strain phenotypes.

In contrast, we demonstrated that on average, chronic carriage isolates formed thicker bio-

films than acute isolates. This result is in line with previous findings which suggest that the

chronic carriage state of S. Typhi is facilitated by formation of biofilms on gallstones within

the gallbladder wherein S. Typhi predominantly persists [14,15]. Biofilm resident bacteria are

highly recalcitrant to antibiotic therapy, and clearance by host immune effectors (reviewed in

[40]), which in turn, facilitates chronic carriage. Much of this resistance is associated with the

EPS components within biofilms, which in addition to maintenance of the biofilm structure,

also provides a physical barrier to and directly compromises the activities of host immune

effectors [16]. eDNA is a key structural component of bacterial biofilms [41–44] and is also

incorporated within S. Typhimurium biofilms wherein it facilitates resistance to antibiotics

and antimicrobial peptides [45]. In this study, we have shown that the thicker biofilms of

chronic carriage isolates correlated with a greater relative level of eDNA than acute infection

isolates that could also likely contribute to their recalcitrance to treatment modalities.

Previous studies have identified several S. Typhi uniquely expressed antigens from chronic

carrier sera that include membrane proteins, lipoproteins and hemolysin-related proteins [46].

Additionally, persistent/chronic carriage isolates of S. Typhi exhibit increased expression of

iron transporters and other factors that provide resistance to host antimicrobial peptides [47].

We have now identified DNABII proteins to be differentially and highly expressed within the

EPS of the biofilms formed by chronic carriage isolates of S. Typhi. Whereas the role of this

increased steady state level of eDNA and DNABII proteins, beyond their contribution to bio-

film structural integrity is not yet known, a DNABII member expressed by Mycobacteria is

known to possess ferroxidase activity. It has been suggested that ferrous iron (used for fenton

chemistry to generate peroxide as a host defense) could be de-toxified by released DNABII

protein-mediated oxidation to the ferric state, suitable for bacterial iron transport and utiliza-

tion [48]. In addition, environmental factors such as bile within the gallbladder upregulate the

expression of EPS components [49,50] that are required for biofilm formation on gallstones

[20,51,52]. In line with these findings, herein we also observed that bile upregulated the intra-

cellular expression of DNABII proteins which corresponded with a concomitant increased

incorporation of these proteins into the biofilm EPS. Furthermore, the DNABII protein IHF

positively regulates the expression of curli, another EPS component that contributes to biofilm

formation by S. Typhi [53]. Collectively, our new data contribute to the findings of others to

suggest that the microenvironment wherein S. Typhi persists results in positive regulation of

components (proteins, polysaccharides etc.,) that promote the chronic carriage state.
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The DNABII family of proteins are highly conserved and one of the members of the family,

HU is ubiquitously expressed by eubacteria. DNABII proteins bind to and bend DNA [54,55]

and thereby play a critical role in the intracellular nucleoid structure and function [56]. These

proteins are also found in the EPS of multiple single and multi-species bacterial biofilms [21–

24,27,30,35,57]. In this study, we now expanded upon our previous observations to demonstrate

that extracellular DNABII proteins were incorporated within the EPS of biofilms formed by

both acute infection and chronic carriage isolates of S. Typhi and that these proteins are critical

to the structural integrity of biofilms formed by S. Typhi. These data are in line with our previ-

ous findings that DNABII proteins serve as linchpin proteins to stabilize the eDNA lattice struc-

ture and their sequestration, via incubation with a specific antibody, disrupts multiple bacterial

biofilms in vitro [21,22,24,26,27,29,36], resolves bacterial biofilms in vivo [27,30,37], and dis-

solves sputum solids ex vivo [35]. Moreover, pre-incubation with the aforementioned DNABII-

specific antibody reduces binding of uropathogenic E. coli to cultured bladder epithelial cells

[58] and also, reduces survival of Burkholderia cenocepacia that have been phagocytized by

murine cystic fibrosis macrophages [22]. Collectively, these results indicate that the extracellular

presence of the DNABII family of proteins is involved in facets of pathogenesis in addition to its

structural role in the EPS. Finally, here for the first time, we demonstrated that for multiple iso-

lates of S. Typhi, there was a constant ratio between cells, eDNA and DNABII regardless of bio-

film size. This latter finding strongly implied that eDNA and DNABII proteins, and their

associated specific ratios, were rate limiting for biofilm formation and further suggested that

more eDNA and DNABII within the biofilm matrix can shift the partitioning of cells from the

planktonic state into the adherent biofilm state. Should this paradigm exist throughout eubacte-

rial biofilms, it would indicate that the most likely rationale is for there to be a uniform common

eDNA-DNABII-dependent EPS that exists within the biofilms formed by diverse species. Given

that the DNABII proteins are universally conserved and have been well documented to stabilize

bacterial biofilm structure, the ability to significantly disrupt a biofilm formed by a chronic car-

riage isolate with antibody directed against a DNABII protein is an exciting first step in the

development of a novel therapeutic to attenuate chronic carriage of S. Typhi.

Materials and methods

Bacterial strains and growth conditions

Bacterial strains used in this study are listed in Table 1. All clinical S. Typhi isolates tested posi-

tive by Vi-antigen agglutination test before use. Strains were streaked on lysogeny broth (LB)

agar plates and incubated at 37˚C for 18–20 hours. Single colonies were used to start overnight

(O/N) liquid cultures. Planktonic cells were grown at 37˚C on a rotating drum in LB or tryptic

soy broth (TSB). Antibiotics, when needed, were used at the following concentrations: chlor-

amphenicol, 25 μg/ml; ampicillin, 50 or 100 μg/ml, kanamycin, 45 μg/ml; and streptomycin,

100 μg/ml. The deletion of tviB in strain JSG3074 was generated by the λ-Red mutagenesis

method [59] with the following primers: upstream primer JG2934 (5’-ataaaattttagtaaaggattaa-

taagagtgttcggtatagtgtaggctggagctgcttc– 3’), downstream primer JG2935 (5’–gtccgtagttcttcg-

taagccgtcatgattacaatctcaccatatgaatatcctccttag– 3’), and verified with primers JG2936 (5’-

tcagcgacttctgttctattcaagtaagaaaggggtacgg– 3’), and JG2937 (5’ -gctcctcactgacggacgtgc-

gaacgtcgtctagattatg- 3’). Antibiotic resistance markers were swapped out using pCP20 [60].

The mutant was verified via sequencing.

Molecular and genetic typing of acute and chronic S. Typhi strains

Clinical S. Typhi strains acquired from Vietnam had been previously whole-genome

sequenced before use in this study. All remaining isolates were whole-genome sequenced as
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part of a consortium with the U.S. Food and Drug Administration (FDA). Genomic DNA of

each strain was isolated from overnight cultures using DNeasy Blood and Tissue kit (Qiagen,

CA, United States). Isolates were sequenced using Illumina’s MiSeq platform (Illumina, Inc.,

CA, United States). Sample preparation and the sequencing library was prepared using the

Nextera XT Sample Preparation Kit and then sequenced for 2 × 250 cycles. The assembled

sequences were annotated using the NCBI Prokaryotic Genomes Annotation Pipeline (PGAP)

and have been deposited at DDBJ/EMBL/GenBank. Genomes are publicly available from Path-

ogen Detection at NCBI (search ICOPHAI IDs at https://www.ncbi.nlm.nih.gov/pathogens/

isolates/).

The maximum-likelihood phylogenetic tree was constructed from the core SNP alignment

of all isolates using snippy version 3.0 as previously described [61]. S. Typhi Ty 2 (JSG698) was

used as a reference for the mapping and SNP calling steps. S. Paratyphi A (strain A270) and S.

Typhimurium 14028s (JSG210) where included as outgroups to infer the true root for the tree

in Fig 1A and 1B respectively, but were removed for mapping and variant calling and the

resulting tree manually rooted. RAxML (version 8.2.10) [62] was used to construct maximum

likelihood phylogenetic trees from the core SNP alignment, with the generalized time-revers-

ible model and a Gamma distribution to model site-specific rate variation (the GTR+Γ substi-

tution model; GTRGAMMA in RAxML). Support for the maximum-likelihood phylogeny was

assessed via 400 rapid bootstraps based on the MRE_IGN-based Bootstrapping criterion.

Visualization and quantification of biofilms formed by various S. Typhi

strains

S. Typhi strains were cultured on TSB agar for 18–20 h at 37˚C, 5% CO2 in a humidified atmo-

sphere, then suspended in TSB to an OD of 0.65 at 490 nm. Cultures were diluted 1:6 in TSB,

then incubated statically at 37˚C, 5% CO2 until an OD of 0.6 was reached at 490 nm. The cul-

tures were diluted 1:2500 in TSB and 200 μl of this suspension was inoculated into each well of

an eight-well chambered cover glass slide (Fisher Scientific). Slides were incubated statically

for 16 h at 37˚C, 5% CO2 in a humidified atmosphere at which time, spent medium was aspi-

rated and replaced with fresh TSB. After an additional 8 h (24 h total incubation time), spent

medium was aspirated and replaced with fresh TSB. After an additional 16 h (40 h total incu-

bation time), biofilms were stained with LIVE/DEAD BacLight Bacterial Viability kit for

microscopy (Molecular Probes) as per manufacturer’s instructions, then fixed (1.6% parafor-

maldehyde- 0.025% glutaraldehyde, 4% acetic acid in 0.2M phosphate buffer, pH 7.4). Biofilms

were visualized via Zeiss 510 Meta-laser scanning confocal microscope and imaged with a x63

objective. Biofilm average thickness and biomass were determined by COMSTAT analysis

[63]. The assay was repeated three times on separate days. Data are presented as mean ± SEM.

Determination of the number of bacteria in the planktonic or biofilm state

Biofilms were established as described in ‘Visualization and quantification of biofilms’ for 40

h. Bacteria within the adherent biofilm as well as those within the culture fluid above the bio-

film (e.g. planktonic state) were enumerated as described previously [57].

Dot blot assay

Bacterial cultures were grown overnight in TSB at 37˚C with aeration, fixed in 4% paraformal-

dehyde (PFA), and normalized to OD600 = 0.8 in PBS. Normalized cultures were then divided

into a lysate group and a non-lysate group (no further processing). Lysate group was boiled for

10 min to lyse the cells. Bacterial dilutions (1:6 for Vi-antigen; 1:20 and 1:50 for O9 antigen)

were prepared, and 200 μl was spotted onto methanol-activated PVDF membranes using a
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suction manifold device. The blots were dried and blocked at 4˚C O/N with 5% milk buffer,

followed by incubation in either α-Vi-antigen (1:1000) or α–O9 antigen (1:1000). The blots

were washed 3 times, 15 minutes each, in tris-buffered saline with polysorbate 20 (TBST) and

incubated with α-mouse IgG 1:2000 (for O9 antigen) or α- rabbit IgG 1:2000 (for Vi Antigen)

antibodies conjugated with horseradish peroxidase (Bio- Rad) O/N at 4˚C prior to visualiza-

tion using the Bio-Rad Chemi-Doc XRS system.

Visualization and quantification of eDNA and DNABII proteins within the

biofilm EPS of various S. Typhi strains

Biofilms were established as described in ‘Visualization and quantification of biofilms’ for 40

h. Unfixed biofilms were washed once with sterile PBS and incubated with either: 5 μg/ml

mouse isotype control IgG 2a; 5 μg/ml α-dsDNA monoclonal antibody; 7.5 μg/ml naive rabbit

IgG; or 7.5 μg/ml α-IHFEc in 5% BSA in PBS for 1 h at room temperature. Biofilms were

washed once with PBS and incubated with 1:200 dilution of each of goat α-mouse IgG 405,

goat α-rabbit IgG 488 and FM4-64 for 1 h at room temperature. Biofilms were washed once

with PBS then imaged with a x63 objective on a Zeiss 800 Meta-laser scanning confocal micro-

scope (Zeiss). Three-dimensional images were reconstructed with AxioVision Rel 4.8 (Zeiss).

Fluorescence intensity of DNABII proteins, eDNA and bacteria were quantified by ImageJ

software and relative abundance of eDNA or DNABII proteins were determined by the ratio

of fluorescence intensity of eDNA or DNABII proteins to the fluorescence intensity of bacteria.

The assay was repeated three times on separate days. Bars represent the mean ± SEM.

Disruption of S. Typhi biofilms with α-IHFEC

S. Typhi strains were cultured on TSB agar for 18–20 h at 37˚C, 5% CO2 in a humidified atmo-

sphere, then suspended in TSB to an OD of 0.65 at 490 nm. Cultures were diluted 1:6 in TSB

then incubated statically at 37˚C, 5% CO2 until an OD of 0.6 was reached at 490 nm. The cul-

tures were diluted1:2500 in TSB or TSB supplemented with ox bile extract or human bile to

0.5%, and 200 μl of this suspension was inoculated into each well of an eight-well chambered

cover glass slide. Slides were coated with cholesterol as described [50]. Slides were incubated

statically for 16 h at 37˚C, 5% CO2 in a humidified atmosphere at which time, spent medium

was aspirated and replaced with fresh TSB. After an additional 8 h (24 h total incubation time),

the spent medium was aspirated and replaced with fresh TSB or TSB that contained either

naive IgG or α-IHFEc IgG (150 μg/ml– 500 μg/ml). Slides were incubated statically for 16 h at

37˚C, 5% CO2 in a humidified atmosphere. Biofilms were stained and imaged as described in

‘Visualization and quantification of biofilms’.

Supporting information

S1 Fig. Characterization of planktonic growth of various S. Typhi strains. Exponential

phase cultures of each of the indicated strains was diluted 1:1000 in TSB and incubated at 37˚C

with continuous shaking. Absorbance at 490 nm were measured every 15 min for 16 hours.

(A) Growth curve plot of chronic carriage isolates versus the lab wild type strain S. Typhi Ty2

(JSG698), in triplicates. (B) Growth curve plot of acute isolates versus the S. Typhi Ty2 strain

(JSG698), in triplicate. JSG3983 and JSG3984 were the only strains wherein a defect growth

rate was observed. JSG3983 also did not grow to the same extent as S. Typhi Ty2 strain

(JSG698).

(TIF)
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S2 Fig. Enumeration of bacteria within biofilms formed by various S. Typhi strains. Bio-

films of each of the indicated S. Typhi strains were established on a 8-well chambered cover-

glass slide for 40 hours. Biofilms were washed twice in sterile PBS, suspended in PBS, and

enumerated on TSB agar. Of the total bacteria within the chambered coverglass, those that

were adherent within the biofilm were enumerated and values presented as percent of total.

Bars represent the SEM. The mean of the percent biofilm bacteria of the chronic carriage iso-

lates was represented by the dotted line labeled AC and the mean of the percent biofilm bacte-

ria of the acute infection isolates was represented by the dotted line labeled AA. Statistical

significance of average thickness or biomass of each of the strains versus the S. Typhi Ty2

strain, JSG698 was assessed by a one-way ANOVA followed by Dunnett’s multiple comparison

test. Statistical significance between AC and AA were assessed by a one-way ANOVA followed

by Tukey’s multiple comparison test. �P<0.05, ��P<0.01, ���P<0.001, ����P<0.0001. On aver-

age, chronic carriage isolates had more bacteria within their biofilms than acute isolates.

Chronic carriage isolates are indicated in red and acute infection isolates are indicated in blue.

(TIF)

S3 Fig. Expression profile of Vi antigen and O9 antigen in various S. Typhi strains. Repre-

sentative images of dot blots for expression of Vi antigen (A) and LPS (B). Either whole cells

(WC) or cell lysates (Ly) of each of the indicated strains were spotted on methanol-activated

PVDF membranes using a suction manifold device. The blots were probed with α-Vi antigen

antibody (A) or α- O9 antigen antibody (B). No clear differences in the expression of Vi anti-

gen or O9 antigen were observed between chronic carriage isolates and acute isolates.

(TIF)

S4 Fig. Bile increased the expression of DNABII proteins intracellularly and increased the

incorporation of DNABII proteins extracellularly within the biofilm EPS. (A) Planktoni-

cally grown S. Typhi Ty2 (JSG698) was pelleted, lysed and proteins were resolved on an

SDS-PAGE gel. DNABII proteins were quantified by Western blot. (B) S. Typhi Ty2 (JSG698)

biofilms were formed in vitro in the presence of TSB or TSB + 0.5% ox bile extract for 40

hours. Biofilms were labeled with α-IHFEc and FM 4–64 and visualized via CLSM. Representa-

tive immunofluorescence images that show the distribution of DNABII proteins within the

biofilms. Images were analyzed by ImageJ to quantify the fluorescence intensity of DNABII

proteins and bacteria. Fluorescence intensity of DNABII proteins (C) and fluorescence inten-

sity of DNABII proteins normalized to cells (D) were plotted. Bars represent the SEM.
�P<0.05, ��P<0.01 via unpaired t test. Bile increased the intracellular and extracellular steady

state levels of DNABII proteins within S. Typhi biofilms.

(TIF)
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