8 research outputs found

    Adsorption-Desorption Behavior and Pesticide Bioavailability of Biochar in Soil

    Get PDF
    Biochar is a porous carbon-rich substance generated by anoxic pyrolysis of biomass. Biochar has a high adsorption capacity for organic contaminants in water and soil environmental media due to its large specific surface area and surface physical and chemical characteristics. The effects of biochar application on the adsorption-desorption behavior and bioavailability of pesticides in soil are illustrated in this paper; biochar can strongly adsorb pesticides in soil due to its loose and porous properties, large specific surface area and surface energy, and highly aromatic structure. Residual pesticide pollutants are reduced, as is desorption hysteresis, which reduces pesticide desorption. Furthermore, the use of biochar reduced the absorption and efficacy of pesticides in soil. At the same time, it describes the present gaps in research on the influence of biochar on pesticide migration mechanisms and its application in pesticide pollution control, and it identifies the major scientific issues that need to be addressed. Finally, the potential application of biochar in pesticide pollution management is discussed

    In silico engineering of Pseudomonas metabolism reveals new biomarkers for increased biosurfactant production

    Get PDF
    Background Rhamnolipids, biosurfactants with a wide range of biomedical applications, are amphiphilic molecules produced on the surfaces of or excreted extracellularly by bacteria including Pseudomonas aeruginosa. However, Pseudomonas putida is a non-pathogenic model organism with greater metabolic versatility and potential for industrial applications. Methods We investigate in silico the metabolic capabilities of P. putida for rhamnolipids biosynthesis using statistical, metabolic and synthetic engineering approaches after introducing key genes (RhlA and RhlB) from P. aeruginosa into a genome-scale model of P. putida. This pipeline combines machine learning methods with multi-omic modelling, and drives the engineered P. putida model toward an optimal production and export of rhamnolipids out of the membrane. Results We identify a substantial increase in synthesis of rhamnolipids by the engineered model compared to the control model. We apply statistical and machine learning techniques on the metabolic reaction rates to identify distinct features on the structure of the variables and individual components driving the variation of growth and rhamnolipids production. We finally provide a computational framework for integrating multi-omics data and identifying latent pathways and genes for the production of rhamnolipids in P. putida. Conclusions We anticipate that our results will provide a versatile methodology for integrating multi-omics data for topological and functional analysis of P. putida toward maximization of biosurfactant production

    Identifying vaccine targets for anti-leishmanial vaccine development

    No full text
    corecore