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Background: Rhamnolipids, biosurfactants with a wide range of biomedical
applications, are amphiphilic molecules produced on the surfaces of or

excreted extracellularly by bacteria including Pseudomonas aeruginosa. However,
Pseudomonas putida is a non-pathogenic model organism with greater metabolic
versatility and potential for industrial applications.

Methods: We investigate in silico the metabolic capabilities of P. putida for
rhamnolipids biosynthesis using statistical, metabolic and synthetic engineering
approaches after introducing key genes (RhIA and RhiB) from P. aeruginosa

into a genome-scale model of P. putida. This pipeline combines machine

learning methods with multi-omic modelling, and drives the engineered P. putida
model toward an optimal production and export of rhamnolipids out of the
membrane.

Results: We identify a substantial increase in synthesis of rhamnolipids by the
engineered model compared to the control model. We apply statistical and machine
learning techniques on the metabolic reaction rates to identify distinct features on the
structure of the variables and individual components driving the variation of growth
and rhamnolipids production. We finally provide a computational framework for
integrating multi-omics data and identifying latent pathways and genes for the
production of rhamnolipids in P. putida.

Conclusions: We anticipate that our results will provide a versatile methodology
for integrating multi-omics data for topological and functional analysis of P. putida
toward maximization of biosurfactant production.
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INTRODUCTION

The growing demand for rhamnolipids production owes to its wide range of industrial
and biomedical applications, including pharmaceuticals, cosmetics and detergents
(Randhawa & Rahman, 2014). The rhamnolipids composed of glycosyl head group

(i.e, rhamnose moiety) and fatty acid (FA) tail, well-characterized bacterial biosurfactants,
are mainly produced by Pseudomonas aeruginosa (Rahman et al., 2002; Abdel-Mawgoud,
Lépine ¢ Déziel, 2014; Randhawa & Rahman, 2014). P. aeruginosa, a gram-negative
opportunistic bacterial pathogen, is widely studied for the biosynthesis of rhamnolipids.
The production of these biosurfactants relies on two precursors: L-rhamnose and R-3-
hydroxy FA, an intermediate of the FA degradation pathway. The rhamnosyltransferase A
(RhlA encoded by rhlA) dimerizes R-3-hydroxy FAs to form R-3-((R-3-hydroxyalkanoyl)
oxy)alkanoic acids (HAA) (Déziel et al, 2003; Zhu & Rock, 2008; Abdel-Mawgoud,
Lépine ¢» Déziel, 2014); subsequently, the rhamnosyltransferase RhIB catalyzes the
addition of the first rhamnose moiety, forming mono-rhamnolipids (Rahim et al., 2001;
Abdel-Mawgoud, Lépine ¢» Déziel, 2014). By contrast, Pseudomonas putida is a gram-
negative, soil-dwelling, non-pathogenic bacterium and represents a model organism
with versatile metabolism with valuable industrial applications (Wittgens et al., 2011;
Tiso et al., 2016). Although it is an evolutionary close relative of P. aeruginosa, its
simplified genetics, the lack of complex regulatory networks found in P. aeruginosa

and the presence of pathways required for the synthesis of rhamnolipid precursors made
P. putida the ideal bacterium of choice to conduct this study.

The applications of bacterial surfactants are diverse and rapidly growing in demand.
One of the reasons rhamnolipids have become such an attractive area for biochemical
research is the scope of their applications. Rhamnolipids could replace petrochemical
derived surfactants used in many cleaning products detergents (Randhawa ¢ Rahman,
2014). Rhamnolipids have also been shown to be a valuable resource in the agricultural
industry, providing pest resistance in various plants, for example, stimulating the
expression of important defense genes in tobacco plants and protecting monocotyledonous
plants against harmful biotrophic fungi (Mulligan, 2005). Additionally, it has been
shown that they are able to improve nutrient adsorption in plant roots (Sachdev ¢
Cameotra, 2013). The emulsifying properties of rhamnolipids make them an ideal tool
for the bioremediation of oil spills. Rhamnolipids are extremely effective in aiding
removing oil from contaminated soil and facilitating its breakdown and dispersal in
aqueous environments (Chen et al., 2013; Kosaric, 2001). Due to their low toxicity,
high bio-degradability and environmental compatibility, rhamnolipids are used efficiently
in microbial enhanced oil recovery and are invaluable tool in bioremediation efforts
(Amani, 2015).

Perhaps one of the most interesting applications of rhamnolipids is within cosmetic and
pharmaceutical industries. Rhamnolipids show potential to be used in a range of cosmetics
such as moisturizers, shampoo, lubricants and anti-wrinkle creams (Randhawa ¢
Rahman, 2014). Research has shown rhamnolipids to have antimicrobial activities against

a host of human pathogens such as Gram-negative bacteria (Salmonella typhimurium,
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Escherichia coli, Enterobacter aerogenes, Serratia marcescens and Klebsiella pneumoniae),
Gram-positive bacteria (Listeria monocytogenes, Staphylococcus aureus, S. epidermidis,
Bacillus cereus and B. subtilis) and fungi (Phytophthora infestans, Phytophthora capsici,
Botrytis cinerea, Fusarium graminearum, Mucor spp., Cercospora kikuchii, Cladosporium
cucumerinum, Colletotrichum orbiculare, Cylindrocarpon destructans and Magnaporthe
grisea) (Rodrigues et al., 2006; Magalhaes ¢ Nitschke, 2013). In addition to this, patents
have been obtained for the use of rhamnolipids to treat organ transplants rejection,
atherosclerosis, depression, schizophrenia, burn shock, wound healing (Piljac ¢ Piljac,
2007). The use of rhamnolipids in these industries may make their commercialization
economically viable. The higher profits that could be made per gram of rhamnolipids
produced when compared with other industries such as cleaning products or
bioremediation mean that the high costs of production and low yields would be less
significant. This would come with a whole new set of challenges, as rhamnolipids being
produced for pharmaceuticals would need to be of an extremely high purity.

Several factors affect the quality and quantity of rhamnolipids produced, the
most important being the carbon source and the nutrient medium. Carbon sources such as
glycerol, glucose, sucrose, mannitol, aliphatic and aromatic hydrocarbons have been
successfully used for rhamnolipid production by Pseudomonas spp. (Silva et al., 2010;
Puskarova et al., 2013). Although the use of low-cost materials is usually considered to solve
the cost problem, the selection of a substrate compatible with cell growth is very important.

The aim of this study is to investigate the metabolic capabilities of P. putida for
rhamnolipids biosynthesis using multi-omics modelling, statistical, metabolic and
biosynthetic engineering approaches. We explore the techniques used by Witigens et al.
(2011) and Tiso et al. (2016) by introducing the RhIA and RhIB genes from P. aeruginosa
to reconstruct an engineered genome-scale model of P. putida. Genome-scale
constraint-based models have been constructed and applied extensively to a range of
problems: genome annotation (Ganter, Kaltenbach ¢ Stelling, 2014), comparative analyses
(Oberhardt et al., 2011; Monk et al., 2013; Bartell et al., 2014; Babaei, Ghasemi-Kahrizsangi
¢ Marashi, 2014; Van Heck et al., 2016; Koehorst et al., 2016), analyses of omics
data (Colijn et al., 2009; Chandrasekaran & Price, 2010; Zur, Ruppin & Shlomi, 2010;
Vijayakumar et al., 2017), disease (and cancer) characterization (Eyassu ¢» Angione, 2017;
Aurich, Fleming & Thiele, 2017; Angione, 2018), drug discovery (Plata et al., 2010) and
metabolic engineering (Puchaoka et al., 2008; McAnulty et al, 2012; Kim et al., 2015).

We simulate single objectives using linear programming, focusing on biomass and
rhamnolipids production. We further investigate the flux distributions using statistical
and machine learning techniques to elucidate the role of the individual reactions and
pathways in determining the predicted phenotype. Our predictions can be used in
synthetic biology to suggest optimal steps for engineering microorganisms and for
analyzing complex omic networks. We finally present a methodological framework
to integrate and analyze gene expression data in the contest of the metabolic model, in
order to closely investigate the pathways and reactions involved in the production of
rhamnolipids. To the best of our knowledge, this is the first study that uses multi-omics in
silico modelling of P. putida for optimizing rhamnolipids synthesis.
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METHODS

Reconstruction of the engineered constraint-based genome-scale
metabolic model

To reconstruct a metabolically engineered model of P. putida for rhamnolipids production,
following Witigens et al. (2011) and Tiso et al. (2016), we introduced two pathways

for rhamnolipids biosynthesis by collating the full list of reactions catalyzed by RhlA and
RhIB to an existing genome-scale model of P. putida, iJP962 (Oberhardt et al., 2011).
The RhlA and RhIB genes produce rhamnolipids by three sequential reactions

(Fig. 1A). RhlA is involved in the synthesis of HAA (Déziel et al., 2003), and is loosely
bound to the inner membrane (Rahim et al., 2001). The next reaction is catalyzed by
the membrane-bound RhIB rhamnosyltransferase and uses dTDP-L-rhamnose and an
HAA as precursors, yielding mono-rhamnolipids (Rahim et al., 2001). The RhlA and
RhIB genes are clustered with rhIR and rhll, which encode proteins involved in their
transcriptional regulation through the quorum-sensing (QS) response and they are
arranged as an operon. Rhll and Lasl synthesize the QS autoinducer molecules
butanoyl-homoserine-lactone (C4-HSL) and 3-oxo-dodecanoyl-homoserine-lactone
(3-0x0-C12-HSL), respectively. When their concentration reaches a threshold, they
bind to the regulator proteins and induce the expression of the Rhl-genes (Witigens et al,
2017). QS response regulates the production of rhamnolipids (Van Delden ¢ Iglewski,
1998), as well as hundreds of additional genes (Hentzer et al., 2003; Schuster et al., 2003;
Wagner et al., 2003).

The full set of known biochemical reactions for rhamnolipids biosynthesis were added
from the P. aeruginosa model (Oberhardt et al., 2008) to the P. putida model iJP962.
Where appropriate, stoichiometrically balanced reactions of the rhamnose pathway from
KEGG (Kanehisa & Goto, 2000), MetaCyc (Caspi et al, 2016) and BRENDA (Schomburg
et al., 2013) were added. Table 1 shows the reactions for rhamnolipids biosynthesis
that were added to the P. putida model. Reactions RHLA, RHLB and RHLC represent the
rhamnosyltransferase chain A, rhamnosyltransferase chain B and rhamnosyltransferase 2,
respectively. Reactions 3H3H and PHAC are involved in the poly (3-hydroxyalkanoic
acid) synthase (Oberhardt et al., 2008). The reaction flux across inner and outer
membranes was carried out by transport reactions, which were modelled as reactions
converting intracellular into extracellular compounds. A transport reaction was also
added for the export of rhamnolipids across the cell membrane. For the full list of reactions
for rhamnolipids synthesis, exchange and transport see Additional File 1.

The model was then manually curated to establish that the new reactions were
fully integrated. This was achieved by evaluating metabolite specificity and metabolite
charges accordingly, as well as reaction directionality to confirm that each reaction
carried a flux. Gene-protein-reaction rules of the added reactions were also curated from
literature (for the final metabolic model see Additional File 2). To run the model, a
linear optimization for rhamnolipid production was then carried out, and flux balance
analysis (FBA) (see the following subsections for a detailed description) was used to

analyze the newly reconstructed engineered model.
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Figure 1 Biosynthesis of rhamnolipids from the metabolic engineered model of Pseudomonas putida. (A) Rhamnolipids biosynthesis pathway.
The figure depicts central carbon metabolism, glycolysis and the tricarboxylic acid (TCA) cycle, and two rhamnolipids precursor pathways: fatty acid
(FA) degradation pathway and the rhamnose pathway. Two genes (rhlA and rhiB) and their corresponding reactions from P. aeruginosa were
incorporated into the P. putida model. Myristic acid is metabolized through the FA degradation pathway, generating intermediates, where RhIA and
RhIB sequentially generate rhamnolipids. On the other hand, RhIB synthesizes rhamnolipids through the thamnose pathway at a higher flux rate
(depicted by the line thickness) whereby the uptake of glucose, fructose, sucrose and glycerol was used as the main carbon sources. Dotted lines
represent multistep reactions, while the line thickness represents the relative flux carried by the corresponding pathway. (B) Rate of biomass and
rhamnolipids production from the P. putida model simulated under different carbon sources. Biomass and rhamnolipids production increase
linearly with the rate of substrate uptake. Myristic acid (C-14) provided maximum biomass and rhamnolipids production compared to the
other carbon sources. (C) Rhamnolipids production by the P. putida model from the rhamnose pathway and fatty acid (FA) pathway. Under all
conditions, the rhamnose pathway generates maximum amount of rhamnolipid. (D) Optimization for biomass and rhamnolipids production by the
P. putida model. Under each carbon source, high rate of rhamnolipids was synthesized through the rhamnose pathway. (E) Comparison of
rhamnolipids production in the P. putida and P. aeruginosa. Under each carbon source, the rate of rhamnolipids production was higher in P. putida
than P. aeruginosa. Full-size k&l DOL: 10.7717/peerj.6046/fig-1
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Table 1 List of reactions for rhamnolipids biosynthesis added to the P. putida model.

Code Reaction formula Reversibility

RHLA (3R)-3-Hydroxydecanoyl-acyl-carrier protein + Coenzyme A = (§)-3-Hydroxydecanoyl-CoA + acyl carrier protein Irreversible

RHLB 3-hydroxydecanoyl-3-hydroxydecanoate + dTDP-4-dehydro-6-deoxy-L-mannose + H+ = dTDP + L-rhamnosyl-3- Irreversible
hydroxydecanoyl-3-hydroxydecanoate

RHLC dTDP-4-dehydro-6-deoxy-L-mannose + H+ + L-thamnosyl-3-hydroxydecanoyl-3-hydroxydecanoate = dTDP + Irreversible
L-rhamnosyl- Lrhamnosyl-3-hydroxydecanoyl-3-hydroxydecanoate

3H3H 2 beta-hydroxydecanoyl-beta-hydroxydecanoyl-S-CoA + H20 = 3-hydroxydecanoyl-3-hydroxydecanoate + Coenzyme A  Irreversible

PHAC (S)-3-Hydroxydecanoyl-CoA = 2 beta-hydroxydecanoyl-beta-hydroxydecanoyl-S-CoA + Coenzyme A Irreversible

Note:

Reactions RHLA, RHLB and RHLC represent the rhamnosyltransferase chain A, rhamnosyltransferase chain B and rhamnosyltransferase 2 respectively. Reactions 3H3H
and PHAC are involved in the poly(3-hydroxyalkanoic acid) synthase.

Geometric flux balance analysis
Flux balance analysis is a widely used mathematical approach for modelling large-scale
metabolic networks (Orth, Thiele ¢ Palsson, 2010). Because FBA assumes the homeostasis
of a system, it does not require knowledge of metabolite concentrations and enzyme
kinetics. This differentiates FBA from other modelling techniques that require kinetic
parameters, usually difficult to obtain. In FBA, the set of biochemical reactions is
represented mathematically in the form of a stoichiometric matrix (S) with dimensions
of m x n, where the m metabolites are represented a rows and the n reactions are
represented as columns. The stoichiometric matrix is a numerical matrix of stoichiometric
coefficients for each metabolite participating in a reaction. The stoichiometric coefficient
for every metabolite consumed and produced in the system has a negative and positive
coefficient respectively. A zero stoichiometric coefficient is given for every metabolite
that does not take part in a given reaction. It is assumed that the system is at a pseudo-
steady state S - v = 0 that holds for internal metabolites, i.e. those reactants and products of
the chemical reactions constituting the model that cannot be imported or exported
directly. The vector v represents the flux distribution of the n reactions. Exchange
metabolites can be imported and exported from the system, so they do not satisfy the
steady state assumption. This flux distribution v therefore represents a feasible flux of
metabolites through the reaction network, where under the principle of mass conservation
the total amounts of internal metabolite consumed and internal metabolite produced
are the same, and the derivative of their concentration is therefore equal to zero.
Constraints such as directionality and capacity (based on enzyme activity, Gibbs free
energy change and uptake rates from the literature) are placed on individual reactions
by defining the upper (V,,,.x) and lower (V,,,;,) bounds on the range of values that the flux
of each reaction can hold (Vimin < v < Vinax). These constraints define the space of
allowable flux distributions at which every metabolite is consumed or produced by each
reaction in the system. Despite these constraints, the system is still underdetermined
(there are more unknowns than equations), and therefore infinite possible solutions exist.
A flux distribution can be obtained by defining an objective function that is a scalar
product of the vector of flux rates v, and a vector of weights ¢, measuring how each
component in the network contributes to the production of a biologically desirable
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phenotype. The set of all possible solutions to the FBA problem is given by the
equation and constraints:

max ¢ - v, such that
S-v=x
x; = 0if M; € internal metabolites
x; € R if M; € exchange metabolites
Viin SV < Vinax (1)

where in our case the vector ¢ allows to select either the biomass or rhamnolipids as the
objective function.

In our pipeline, we use the geometric flux balance approach to define a unique flux
balance solution (Smallbone ¢ Simeonidis, 2009). Geometric FBA is based on a geometric
representation of a FBA problem. In particular, every FBA problem defines a polyhedron
which can be naturally decomposed as the sum of a convex hull and a pointed cone;
FBA solutions are to be found within the hull. Since the vertices of the hull and the rays of the
cone are uniquely defined, the center of the solution hull (ie., the final FBA solution)
is uniquely defined. Using the geometric FBA algorithm allows us to choose a unique and well-
defined flux from the space of all possible solutions. The solution provided also satisfies a
number of additional constraints. Indeed, the model assumes that flux correlates with enzyme
levels, which is equivalent to the cell minimizing the amount of enzyme required to satisfy this
objective. Moreover, the algorithm removes any fluxes representing thermodynamically
infeasible internal cycles and selects the solution required to satisfy the given objective from
the remaining set of solutions. Hence, the chosen unique solution flux is in a sense “central”
and can be considered unbiasedly representative of all possible FBA solutions.

Objective function and uptake rates for optimal rhamnolipids synthesis
Consistent with the reference model iJP962, we used the uptake of glucose at 10 millimoles
per gram dry weight per hour (mmol/gDW/h) as a control growth condition. To
determine the best carbon source for optimal rhamnolipids synthesis, we investigated
alternative carbon sources separately: fructose, sucrose, glycerol, benzoate and

myristic acid. We simulated the growth medium with a single carbon source by setting
to 10 mmol/gDW/h the uptake of the carbon source under investigation and to zero the
uptake of the other sources.

Our P. putida model was optimized to maximize the production and export of
rhamnolipids. Hence, we used maximum rhamnolipids production as the objective
function in our engineered model. Geometric FBA was used to calculate the optimal
flux distribution that maximizes the objective function. Simulations were carried out in
MATLAB (version R2018a) using the COBRA toolbox (Schellenberger et al., 2011), with
the linear programming solver GLPK (the Matlab script is provided as Additional File 3).

Using gene expression data to build condition-specific metabolic models
Understanding how the transcriptomic alterations change the metabolic phenotype can

provide an effective method for data interpretation and analysis (Vijayakumar et al., 2018;
Stephens et al., 2015). To this end, we also used the P. putida metabolic model to investigate
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the transcriptomic effects on different pathways and reactions by including gene
expression data into the proposed model.

GEMsplice (Angione, 2018) was used to merge gene expression data with the P. putida
metabolic model. The main idea is to create a profile-specific metabolic model for
each single gene expression profile. This is done by defining the constraints on fluxes in
Eq. (1) as

Vimnin®(0) <v < Vinax0(0) (2)

where the function ¢ maps the expression level 0 of each gene to a coefficient for the lower-
and upper-bounds of the corresponding reactions, and is defined as

@(8) = [1 +y[log B[]~ (3)

where the sgn operator returns a vector of +1 (signs of 6 — 1). The constant vy sets the
weight of the gene set expression level as an indicator of the rate of production of the
associated enzyme (Angione, 2018). We ran our model with y = 1 in order to ensure a
logarithmic effect of the transcriptomic value on the flux bounds of the metabolic model.

We used the integrated model to investigate the relation between gene-expression
data and rhamnolipids production in P. putida. We downloaded the expression data of
P. putida from GEO (accession number: GSE28257). The dataset provides the expression
levels 6 of 5,547 genes for 40 samples of the P. putida wild type and 40 samples of P. putida
Tn5 mutants. For each sample, a condition specific model was created by using Eq. (2)
as constraint in the geometric FBA problem. We used maximum rhamnolipids
production as the objective function in our engineered condition-specific models in
order to maximize the production and export of rhamnolipids.

Elastic-net regression identifies key genes driving metabolic
alterations
After running the condition-specific models, we compared the predicted flux rates (i.e., the
FBA solution vector v) of the two groups (wild type and Tn5 mutant) to identify a set of
differentially active reactions (DARs), that is, reactions with an adjusted p-value < 0.05.
The identified reactions belong to disrupted metabolic pathways that carry a significantly
different flux between the wild type samples and the Tn5 mutant samples when the
rhamnolipids production is maximized. To further investigate those disrupted metabolic
pathways and identify the genes contributing to the flux rates of the DARs in the two
groups, we applied the variable selection regression method described below. The idea is to
identify the genes that are highly predictive of the flux rate of each DAR when optimizing
the rhamnolipids production rate.

Let t be the number of observations (samples) with p predictors (genes). Let y= (yy, ..., y,)"
be the response (the FBA solution vector) and X = (x,|...|x,) be the model
matrix (gene expression matrix), where x; = (xy. . ., xtj}T,j =1,...,p are the predictors.
For any fixed non-negative A, and A,, we use the elastic-net regularization criterion
(Zou ¢ Hastie, 2005), namely a linear combination of lasso and ridge regression penalties:

L(A1, A2, B) = ||y — XBll2 + Ay || Bl + A2 ||Bll2 (4)
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where B = (B1,. . .,p,) is the vector of coefficients to be estimated, ||p|[, = Zf=1|[3j and
IBll2 = le Bf The elastic-net estimator f is the minimizer of Eq. (4):

B = argming {L(A1, A2, B)} 5)
Let oo = Ay/(Ay + X,) and A = &, + Ay; then solving ﬁ in Eq. (5) is equivalent to the
optimization problem

B = argming ||y — XBll2 + Pu(B) ®
where P, ;(B) is the elastic-net penalty function defined as

Por(B) = Al(L — ) [|Bllx + o [| Bl|2] (7)

In our analysis, the model matrix X was set equal to the normalized gene expression
matrix, with ¢ = 80 observations (expression profiles) and p = 5,547 predictors (genes).
The response variable y was set equal to the vector of flux rates of the DAR to be analyzed
(y is a vector with dimension t x 1). Hence, y is the vector with the flux rates of a
given DAR resulting from running each of the t = 80 FBA condition-specific models. For
each DAR, we set the regularization parameter o = 0.5 to achieve a balance between lasso
and ridge regression. We used a 10-fold cross validation to identify the optimal A.
Simulations were carried out in R version 3.5.1 using the glmnet package 2.0-16
(Friedman, Hastie & Tibshirani, 2010).

RESULTS

To implement the maximization of rhamnolipids production, we started from a genome-
scale model of P. putida, iJP962 (Oberhardt et al., 2011). To enable the production of
rhamnolipids, we engineered the iJP962 model by introducing the genes and reactions
responsible for rhamnolipids biosynthesis from P. aeruginosa. Figure 1B shows the
maximum production of biomass and maximum production and export of rhamnolipids.
Using the reference condition (uptake of glucose at 10 mmol/gDW/h), our model
predicted a production of 0.74 mmol/gDW/h of biomass, in agreement with the genome-
scale model iJP962.

Figure 1B shows the rate of biomass and rhamnolipids production from the P. putida
model simulated under different carbon sources (fructose, sucrose, glycerol, benzoate
and myristic acid). We found that biomass synthesis and rhamnolipids production
increased linearly with the rate of metabolite uptake. Our simulation-based predictive
results are in keeping with our lab-based fermentation work previously carried out with
Pseudomonas strains (Rahman et al., 2002, 2009, 2010; Joy, Rahman ¢ Sharma, 2017;
Parthipan et al, 2018). In addition, we also identified that myristic acid (C-14) provided
optimal growth rate and rhamnolipids production compared to the other carbon
sources in this study.

To pinpoint the key intermediates contributing to the formation of rhamnolipids,
we assessed the pathways in the engineered model. Specifically, rhamnolipids utilize
glucose-6-phosphate and acetyl-CoA (intermediates of central metabolism) to drive
the biosynthetic pathway through two distinct routes: the rhamnose pathway and FA
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pathway (Fig. 1A). Glucose-6-phospate generated from degradation of glucose,

fructose, sucrose and glycerol, when provided as a main carbon source, fed to the
rhamnose pathway subsequently forming dTDP-rhamnose, a precursor of rhamnolipid.
Consistent with the findings of Tiso ef al. (2016), fluxes from the degradation of glucose,
fructose and benzoate generated rhamnolipids via the rhamnose pathway. On the other
hand, provision of myristic acid and benzoate entered FA degradation pathway, generating
intermediates for RhlA to form HAA. Benzoate enters central metabolism via actyl-CoA
and succinyl-CoA. This is in agreement with the report by Abdel-Mawgoud, Lépine &
Déziel (2014). Subsequently, the RhlB formed rhamnolipids, which was then exported
to the extracellular compartment (Fig. 1A). To determine the routes of rhamnolipids
production by the P. putida model, we evaluated the flux distribution of the rhamnose
and FA pathway. Simulation under all different carbon growth medium revealed that
the flux through the rhamnose pathway was dominant in producing maximum amount
of rhamnolipids compared to the FA pathway.

Rhamnolipids synthesis by the engineered model of P. putida

To determine the maximum rhamnolipids production by the engineered in silico model, we
investigated several carbon sources and evaluated the metabolic network comprehensively
(Fig. 1B). When the P. putida model was optimized for biomass and rhamnolipids
production, the amount of rhamnolipids production increased with the uptake of each
metabolite. Metabolism of myristic acid (C-14), followed by fructose and sucrose/glucose,
provided the best condition for optimal rhamnolipids synthesis. As expected, rhamnolipids
synthesis increased in a linear relationship with the increased uptake of various carbon
sources (Fig. 1B). Our results also suggest that most of the rhamnolipids production derives
from the rhamnose pathway rather than from the FA degradation pathway (Figs. 1A and
1C). Interestingly, when myristic acid was supplied as a carbon source, both pathways
contributed to rhamnolipids production to a similar degree. Figure 1D shows rhamnolipids
synthesis and biomass by the engineered model under each carbon source.

To determine whether a mixture of metabolites increased rhamnolipids production, we
increased the uptake of mixed metabolites simultaneously. When glucose and glycerol or
glucose and myristic acid were supplied as combinations of metabolites simultaneously,
rhamnolipids production increased to 2.19 mmol/gDW/h and 4.50 mmol/gDW/h,
respectively, compared to when each metabolite was supplied individually. In our previous
study, a mineral salt medium used for growing biosurfactant producers was initially
supplemented with two g/L glucose to initiate biomass production. This was followed by
the addition of glycerol to test their influence on biosurfactant production. Pseudomonas
aeruginosa DS10-129 produced a maximum of 1.77 g/L rhamnolipid with glycerol at 288 h
(Rahman et al., 2002).

Comparison between P. putida and P. aeruginosa for production of
rhamnolipids

Figure 1E shows the comparison between our model and the Pseudomonas aeruginosa
PAO1 model (Oberhardt et al., 2008) in terms of rhamnolipids production under six
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different carbon sources (glucose, fructose, sucrose, glycerol, benzoate and myristic acid).
The transport reactions for the export of rhamnolipids across the cell membrane were
added to the P. aeruginosa model. In order to compare the two models under the same
carbon sources, the transport reactions across inner and outer membranes for sucrose
and benzoate were also included in the P. aeruginosa model (see Additional File 4 for
the full list of reactions).

To analyze the different production rates of rhamnolipids, we investigated the
alternative carbon sources separately by setting an uptake rate of 10 mmol/gDW/h for
the carbon source under investigation, and zero uptake for the other sources. Both models
show a high production rate of rhamnolipids when either glucose, fructose or sucrose is
provided, consistent with previous results (Bahia et al, 2018). Glycerol provides enough
nutrients for P. putida and P. aeruginosa for the production of rhamnolipids in
accordance with Rahman et al. (2002) and Silva et al. (2010). When benzoate or
myristic acid were provided as sole carbon source, the production rate of rhamnolipids
was 1.967 mmol/gDW/h in P. putida and null in P. aeruginosa, which might be due to the
unrelated genome codon index and codon adaptation index profiles of the two bacteria
(Weinel et al., 2002). However, if we used the uptake of glucose at 10 mmol/gDW/h as
a control growth condition (Oberhardt et al., 2011), the production rate of rhamnolipids
was 1.818 mmol/gDW/h in both models.

Principal component analysis reveals biomarkers of rhamnolipids
production in P. putida

Principal component analysis (PCA), a form of unsupervised machine learning, identifies
data similarities from multidimensional biological datasets (Brunk et al, 2016). More
specifically, PCA is a statistical technique that uses a multi-dimensional space to convert a
set of correlated variables into linear uncorrelated latent variables called principal
components. In our case, it is based on the singular value decomposition of the matrix
of flux rates, and is therefore equivalent to finding the system of axes in the space of
flux rates such that the covariance matrix is diagonal.

We investigated the individual reactions and identified the key components that drive
change in the growth and rhamnolipids production in the engineered model. We applied
PCA on our observed flux dataset generated under different growth media; glucose,
fructose, sucrose, glycerol, benzoate and myristic acid. To characterize the unique features
of individual reactions and variables in the observed flux datasets, we plotted the first two
singular vectors of PCA (Figs. 2A and 2B). We found that the first two eigenvectors sum
to 88.7% of the variance in the observed flux. These findings suggest that changes in
reaction fluxes correlate with the availability of various carbon sources for growth and
rhamnolipids production. Figure 2A shows the variable correlation plot of each variable
and the contribution for the corresponding carbon source. We found that the first
component correlates highly with the variables fructose and sucrose, while the second
component correlates with the variables myristic acid and benzoate. Table 2A shows
the detailed contribution of each carbon source on the principal components. These
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Figure 2 Principal component analysis of flux rates of the engineered P. putida. (A) Variables factor map. The distribution of each carbon sources
used for growth correlates differently with the principal components. Fructose and sucrose correlate positively with the first component (Dim1), while
the second component (Dim2) correlates highly with benzoate and myristic acid. (B) Individuals factor map. Key reactions of the central metabolism are
drivers of growth and rhamnolipids production in the engineered P. putida model. Each component, RR08593 (ATP synthase) and IR10022 (cyto-
chrome-c reductase) are distinguishable between the different conditions. The names of the top-30 reactions with the highest contributions have been
reported in the factor map. (C) Correlation histogram. The distribution of each variable is shown in the diagonal panel representing the main carbon
sources: glucose, fructose, sucrose, benzoate, glycerol and myristic acid. In the top panels, the absolute value of the correlation is shown with the result of
the correlation test (p-value < 0.001). In the bottom panels, the bivariate scatter plots are displayed, with a fitted line. (D) Scree plot generated from
eigenvalue versus component number. (E) Correlation matrix illustrating the correlation between each variable and the PCA latent dimensions. Blue
color represents positive correlation, while the color intensity and size of the circles are proportional to the correlation coefficients. The reader is referred
to Table 2 for individual reaction scores, and to the main text for further interpretation of the results.  Full-size &l DOI: 10.7717/peerj.6046/fig-2

variations are driven by changes in the amount of carbon sources used for growth,

indicating the network adaptation, particularly in the rate of core metabolic reactions.
Figure 2B shows the top-30 individual reactions, with the highest mean scores on the

components, mapped on the first two principal components (for the full list of
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Table 2 Contribution of variables and individual reactions on the principal components.

PC1 PC2 PC3 PC4 PC5
(A)
Glucose 17.733 10.669 0.001 56.157 15.396
Fructose 19.748 4.086 0.463 4.852 3.273
Sucrose 19.167 1.467 4.929 34.892 29.010
Benzoate 11.431 46.868 34.473 3.889 3.100
Glycerol 18.208 10.804 0.978 0.101 48.304
Myristic acid 13.713 26.106 59.157 0.108 0.917
(B)
RR08593 23.878 0.683 0.878 0.575 0.040
RR08674 22.980 9.956 2.130 3.316 0.376
EX_EC0001 17.651 7.972 2223 0.260 0.772
EX_EC0007 5.952 8.456 0.015 0.201 0.096
IR10022 5.758 0.401 17.861 0.124 0.569
RR04368 0.963 9.394 10.448 0.323 0.162
Note:

(A) Fructose and sucrose are highly correlated with the first component (PCL1), compared to benzoate or myristic acid.
This variation is driven by the activity of core metabolic reactions for energy demand toward growth and rhamnolipid
synthesis. (B) The individual reactions driving rhamnolipid synthesis scored highly on the first two principal
components; these include ATP synthase (reaction id: RR08593), cytochrome-c reductase and succinate dehydrogenase
(reaction id: IR10022 and RR04368).

contributions see Additional File 5). ATP synthase (reaction id: RR08593) and
cytochrome-c oxidase (reaction id: IR10022), together with the uptake of oxygen, H,O
and H,O transport (reaction ids: EX_EC0001, EX_EC0007 and RR08674), scored highly
with the first component, indicating the energy demand for growth and rhamnolipids
synthesis (Table 2B). The utilization of cytochrome-c oxidase is a common feature of
several proteobacteria (Osamura et al., 2017); it is involved in the production of ATP via
the respiratory electron transport chain and contributes to the production of the necessary
enzymes subsequently used for ATP production by the ATP synthases (Tremblay ¢ Déziel,
2010). One of the reactions that scored highly with the second component is succinate
dehydrogenase (reaction id: RR04368). This reaction is involved both in the
tricarboxylic acid cycle (TCA) and in respiration via the electron transport chain linked to
rhamnolipid production (Witigens et al, 2011). Figure 2C reports the correlation
matrix of the six variables under investigation (the distribution of each variable, the
absolute value of the correlation, the result of the correlation test and the bivariate
scatterplots with a fitted line). The plot shows that the results of this preliminary analysis
are in accordance with the results reported in the PCA variables factor map (Fig. 2A).

In order to analyze the quality of our PCA analysis, we report the scree plot (Fig. 2D)
and the cos® correlation map (Fig. 2E). The first two components retain 88.7% of the
information (variances) contained in the data, which allows us to focus only them for
the statistical analysis of the model. Moreover, the correlation plot of cos® (Fig. 2E)
indicates a good representation of the variables on the first two principal components.
This also explains the position of the six variables in Fig. 2A (they are close to the

circumference of the correlation circle).
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Table 3 Top-5 differentially active reactions (DARs) in wild type and Tn5 mutant P. putida samples.

Top-5 Differentially active reactions Pathways p-value
L-Alanine:3-oxopropanoate aminotransferase Purine metabolism 0.0042
3-Aminopropanoate:2-oxoglutarate aminotransferase Fatty acid biosynthesis 0.0043
4a-hydroxytetrahydrobiopterin dehydratase Benzoate degradation via hydroxylation 0.0066
NADH:6,7-dihydropteridine oxidoreductase Pyrimidine metabolism 0.0341
L-Phenylalanine,tetrahydrobiopterin:oxygen oxidoreductase(4-hydroxylating) Folate biosynthesis 0.0341

Note:

The first column reports the list of the top-5 DARs (reactions with adjusted p-value < 0.05). The second column report the pathways associated to each disrupted reaction.
The adjusted p-value is reported in the third column.

In conclusion, the PCA analysis shows that our results are in agreement with those
obtained by Wittgens et al. (2011) and Tiso et al. (2016). Indeed, the high cos® value of
glucose and fructose shows that they both play a key role in the metabolic pathway of
rhamnolipids synthesis chosen as FBA objective. Hence, fluxes from the degradation of
glucose and fructose generate rhamnolipids via the rhamnose pathway.

Regression analysis identifies disrupted pathways and genes

We integrated gene expression profiles into the proposed metabolic model of P. putida
to investigate disrupted metabolic reactions and pathways using GEMsplice (Angione,
2018). We compared 40 samples of the P. putida wild type with 40 samples of P. putida
Tn5 mutants. We simulated the growth medium using the single carbon source that
allowed the highest production of rhamnolipids, that is, myristc acid (Fig. 1C). Hence,
we set the uptake of myristic acid equal to 10 mmol/gDW/h while the uptake of the
other sources was set equal to zero. Table 3 reports the list of the pathways associated
with the top-5 DARs, that is, reactions with an adjusted p-value < 0.05 (for the full list of
15 DARs see Additional File 6).

Purine metabolism and FA biosynthesis are the two pathways associated with the top-2
DARs with adjusted p-value of 0.0042 and 0.0043, respectively. Both pathways play a key
role in the rhamnolipids production (Rehm, Mitsky ¢» Steinbiichel, 2001) and bacterial
membrane biogenesis (Zhang ¢» Rock, 2012). The benzoate degradation via hydroxylation
pathway (adjusted p-value = 0.0066) has also been previously linked to the rhamnolipids
pathways (Procopio et al., 2012). Indeed, the genes encoding enzymes involved in
the rhamnolipids productions also encode enzymes for the benzoate degradation via
hydroxylation pathway. It is noteworthy that the identified DARs reflect the disruption
of metabolic pathways from the interaction between gene expression profiles (integrated
through GEMsplice) and metabolic networks (represented by the P. putida metabolic
model). As a consequence, these results are complementary to the outcomes obtained
through metabolic network analysis alone, which does not take into account specific
transcriptomic profiles.

Regression analysis (elastic-net, see Methods) was then applied to identify the key genes
contributing to the flux rate of the DARs. Figure 3 shows the distribution of the top-10
genes (genes with the highest |B|) ¢ the most disrupted DAR (in the purine metabolism
pathway) for the wild type and Tn5 mutant samples. By analyzing these distributions it is
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Figure 3 Top-10 genes contributing to the flux of the most disrupted metabolic reaction (part of the
purine metabolism pathway). The boxplots report the distribution of the 10 genes with the highest |B|
resulting from the elastic-net regression analysis in both wild type and Tn5 mutant P. putida samples.
Full-size &l DOL: 10.7717/peerj.6046/fig-3

possible to characterize the metabolic diversity of the different samples and predict their

behavior under different conditions. For example, the different distribution of the gene
PP2431 might reveal a different cellular adaptation (Ferndndez et al., 2013). Moreover, the
gene PP4355 has been identified as a gene involved in the encoding process of diverse
flagellar components in Tn5 mutants samples, which might explain the different
distributions in the two types of samples (Sharma et al., 2014). We stress that the procedure
proposed here is a single case study, and it can be adapted and extended to identify or

compare any two different types of P. putida samples.

DISCUSSION

The growing demand for biosurfactants requires rapid, efficient and innovative approaches

for its synthesis, including the use of microorganisms. However, native bacterial cells are
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very inefficient at maximizing the production of industrially-relevant products.
Bioengineering of such cells can improve the yield, but the number of potential metabolic
and genetic interventions is enormous in practice (Kell, 2012). At the same time, the
emergence of in silico modelling enables us to metabolic engineer microbial networks

in silico, and to predict their efficiency in a variety of growth conditions.

Machine learning tools coupled with computational modelling of metabolism can
rapidly identify ways of increasing the productivity of these cells toward maximum
production of biosurfactants while maximizing the growth rate of the cultures. In this
study we genetically engineered P. putida KT2440, offcially classified as a “generally
recognized as safe” strain and used in the production of diverse natural products, including
rhamnolipids (Loeschcke & Thies, 2015). In particular, P. putida was observed to have
resistance to higher rhamnolipid concentrations (90 g/L) in the production medium
when compared to other microbial hosts of industrial importance like E. coli, B. subtilis
and C. glutamicum (Wittgens et al., 2011).

Recombinant rhamnolipid production has many industrial advantages, including the
opportunity to use non-pathogenic production strains and the ability to produce
rhamnolipids independent of the complex quorum sensing regulation. Non-pathogenic
bacterial strains have been genetically engineered to express P. aeruginosa rhl-genes for the
heterologous rhamnolipid production (Beuker et al, 2016). Ochsner et al. (1995) studied
rhamnolipid synthesis by recombinant P. fluorescens, P. putida, P. oleovorans and E. coli
with the rhlAB operon from P. aeruginosa and observed rhamnolipid production by
P. fluorescens (0.25 g/L) and P. putida (0.6 g/L). But no rhamnolipids were produced
by recombinant E. coli and P. oleovorans, despite the detection of an active
rhamnosyltransferase. Recombinant E. coli strains were also used by Wang et al. (2007)
and Cabrera-Valladares et al. (2006) for heterologous expression of P. aeruginosa rhlAB
genes. Cha et al. (2008) and Cabrera-Valladares et al. (2006) reported rhamnolipid
production by a recombinant P. putida (7.3 g/L) and recombinant E. coli HB101 (52 mg/L)
with soybean oil and oleic acid as substrates, respectively. As the production of high
yields of rhamnolipids is dependent upon precursors provided by the metabolic flux within
the bacterium, it is unlikely that simply implanting the necessary genes in a bacterium
will be sufficient to make that organism produce rhamnolipids in higher concentrations
(Marchant ¢ Banat, 2012). Genetic alterations can however be an important part of
organism selection for fermentation processes, and computational tools can help
finding the best experimental setting to maximize their production.

In this study, we have taken a genome-scale approach to investigate the metabolic
potential of P. putida to produce rhamnolipids by optimizing multiple cellular functions.
Figure 1B shows the rate of biomass and rhamnolipids production by P. putida model
simulated under different carbon sources: glucose, fructose, sucrose, glycerol, benzoate
and myristic acid. Biomass synthesis and rhamnolipids production increased linearly with
the rate of metabolite uptake, and myristic acid (C-14) supported optimal growth rate
and rhamnolipids production compared to the other carbon sources. When the P. putida
model was optimized for biomass and rhamnolipids production, the amount of
rhamnolipids production increased with the uptake of each metabolite. Quorum sensing,
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namely the mechanism by which bacteria engage in cell-to-cell signaling communication
using diffusible molecules based on a critical cell density, might be one of the reasons
why rhamnolipid synthesis is associated with exponential stage of the biomass

(Dusane et al., 2010).

These outcomes support previous studies involving rhamnolipid production on sugars
and sugar-containing wastes. Sugar-containing wastes are gaining prominence due to
their lower cost when compared to oil- or glycerol-containing wastes despite the lower
rhamnolipid yields (Henkel et al., 2012). Agro-industrial wastes are rich in carbohydrates
and lipids and hence can be used as a carbon source for microbial growth and
rhamnolipid synthesis (Gudifia et al., 2015). Among them, molasses has a high sucrose
concentration in the range of 50-55% by weight. Raza et al. (2007) obtained a maximum of
1.45 g/L rhamnolipid yield after 96 h of incubation with P. aeruginosa EBN-8 mutant
on 2% blackstrap molasses. Similarly, Onbasli & Aslim (2009) used 5% sugar beet molasses
and obtained a maximum rhamnolipid yield after a 12 h incubation with P. luteola
B17 and P. putida. Li et al. (2011) and Gudifia et al. (2015) observed the highest biosurfactant
production yield of 2.6 g/L and 3.2 g/L by P. aeruginosa using molasses distillery wastewater
and a culture medium containing corn steep liquor and molasses, respectively.

We observed that the metabolism of myristic acid provided the best condition for
optimal rhamnolipids synthesis, followed by fructose and sucrose/glucose. Plant oils are
a rich source of myristic acid and these long chain FAs have been successfully used as
carbon source for rhamnolipid biosynthesis. For instance, Radzuan, Banat ¢» Winterburn
(2017) showed that P. aeruginosa PAO1 can grow and produce 0.43 g/L of rhamnolipids
using palm FA distillate under batch fermentation. Cha et al. (2008) studied the growth
of P. aeruginosa EMS1 and P. putida 1,067 in mineral salt medium with 2% soybean oil as
the sole carbon source. They detected rhamnolipid productions of about 5.18 g/L and
6.97 g/L, respectively. This shows that P. putida 1,067 is more efficient than P. aeruginosa
EMSI in using plant oils as carbon source. Vegetable oils are more efficient in inducing
rhamnolipid production when compared to the hydrophilic substrates like glucose,
fructose and sucrose; this may be due to their water-soluble nature that facilitates the
ease of uptake. However, vegetable oils are hydrophobic, and this stimulates the bacterial
rhamnolipid production to increase their solubility (Cha et al., 2008).

When we investigated the metabolic reactions and pathways that are disrupted by
integrating the gene expression profiles into the proposed metabolic model of P. Putida,
the top two pathways observed were purine metabolism and FA biosynthesis, followed by
benzoate degradation, pyrimidine metabolism, folate biosynthesis and porphyrin and
chlorophyll metabolism. These results highlight the essential role of nucleic acid metabolic
pathways in rhamnolipid biosynthesis. This might be due to the fact that under
exponential growth conditions bacterial replications leads to the activation of purine and
pyrimidine pathways. Moreover, porphyrin and chlorophyll metabolism play an
important role in the biosynthesis of tetrapyrroles like hemes, chlorophylls and cobalamin.
They serve as prosthetic group of many proteins involved in fundamental biological
processes like respiration, metabolism and transport of oxygen. Further, heme acts as
essential cofactor for enzymes such as catalases, peroxidases and cytochromes.
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Nikel ¢ De Lorenzo (in press) have recently published an updated genome annotation of
P. putida KT2440, which includes novel catabolic pathways for 32 carbon sources, 28
nitrogen sources, 29 phosphorus sources and 3 carbon and nitrogen sources. This unique
metabolic architecture of P. putida will be harnessed for future studies. Furthermore,
while FBA only allows for one objective function (usually the growth rate), multi-target
optimization algorithms have been developed and applied to genome-scale metabolic
models of microorganisms to optimize multiple cellular functions (Costanza et al., 2012;
Angione & Lio, 2015). We specifically envisage the use of machine learning coupled with
multi-level optimization for industrial biotechnology. For instance, one can engineer a
microorganism to maximize the export of selected chemicals out of the cellular membrane,
while ensuring biomass production and simultaneously minimizing byproduct formation.
Taken together, our findings clearly show the potential use of engineered strains coupled
with metabolic modelling and machine learning tools for rhamnolipids production.

CONCLUSION

We engineered a genome-scale model of P. putida for optimization of rhamnolipids
production as a high-end secondary metabolite. Our in silico model was engineered to
produce rhamnolipids by utilizing two key enzymes: RhlA and RhIB. All corresponding
biochemical reactions for rhamnolipids biosynthesis were added from the P. aeruginosa
model (Oberhardt et al., 2008); where appropriate, KEGG, MetaCyc and BRENDA

were used to add new reactions for the rhamnose pathway. Our engineered in silico
model was designed to synthesize and export rhamnolipids; the transport mechanisms for
rhamnolipids export were modelled as a reaction step that carried out fluxes from the
intracellular to the extracellular compartment across the cell membrane. The engineered
model was manually curated and geometric FBA was used to reproduce the flux of 0.74
mmol/gDW/h of biomass, consistent with the i{JP962 model (Oberhardt et al., 2011).

A further statistical analysis based on PCA was performed to further elucidate the
metabolic behavior, and to identify roles of individual nutrients and reactions in shaping
the response of the engineered cell. Finally, transcriptomic data was integrated into
our model, which allowed building condition-specific models of P. putida to exploit and
predict the metabolic and genetic engineering steps needed for maximizing rhamnolipids
production. These models were investigated with elastic-net regression with the aim
of identifying latent pathways and genes correlated with enhanced production of
rhamnolipids in P. putida.

When experimental data on the engineered organism become available, we envisage
three directions for extension of the model. (i) Multi-step optimization algorithms
can be used to maximize the growth rate and rhamnolipids synthesis, and simultaneously
minimize byproduct formation in a multi-target fashion (Angione, Pratanwanich & Lio,
2015). The proposed in silico design of P. putida can then be assessed using advanced
sensitivity techniques, robustness and control analysis. (ii) If more than one omic-level
information is available, methods from network theory (Angione, Conway ¢~ Lio, 2016) can be
adapted to give insights into the model and predict the behavior of the microorganism in
untested conditions. (iii) Alterations to the regulatory genes Rhll and RhIR could influence
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overall yield. In addition to this, the RhIC gene, which codes for a rhamnosyl transferase
responsible for mono- to di-rhamnolipid conversion, could be regulated (partial knockdown
or overexpression) to ensure the production of a specific type of rhamnolipid.

The ability to adapt to such conditions across multiple omic levels can for instance
be assessed by evaluating the changes in the proteins of the outer membrane, key players
in the adaptation of Pseudomonas to environmental perturbations and in the production
of rhamnolipids (Wilhelm et al., 2007; Bouffartigues et al., 2011). Taken together, our
findings give strong basis for metabolic engineering of P. putida for rhamnolipids
production and provide a framework and a working model for further studies
involving optimization of biosurfactant production.
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