286 research outputs found

    Consistent Pauli reduction on group manifolds

    Get PDF
    We prove an old conjecture by Duff, Nilsson, Pope and Warner asserting that the NS-NS sector of supergravity (and more general the bosonic string) allows for a consistent Pauli reduction on any d-dimensional group manifold G, keeping the full set of gauge bosons of the G x G isometry group of the bi-invariant metric on G. The main tool of the construction is a particular generalised Scherk-Schwarz reduction ansatz in double field theory which we explicitly construct in terms of the group's Killing vectors. Examples include the consistent reduction from ten dimensions on S3×S3S^3\times S^3 and on similar product spaces. The construction is another example of globally geometric non-toroidal compactifications inducing non-geometric fluxes.Comment: 16 page

    A New Method for Non-Invasive Estimation of Human Muscle Fiber Type Composition

    Get PDF
    Background: It has been established that excellence in sports with short and long exercise duration requires a high proportion of fast-twitch (FT) or type-II fibers and slow-twitch (ST) or type-I fibers, respectively. Until today, the muscle biopsy method is still accepted as gold standard to measure muscle fiber type composition. Because of its invasive nature and high sampling variance, it would be useful to develop a non-invasive alternative.status: publishe

    Determinants of muscle carnosine content

    Get PDF
    The main determinant of muscle carnosine (M-Carn) content is undoubtedly species, with, for example, aerobically trained female vegetarian athletes [with circa 13 mmol/kg dry muscle (dm)] having just 1/10th of that found in trained thoroughbred horses. Muscle fibre type is another key determinant, as type II fibres have a higher M-Carn or muscle histidine containing dipeptide (M-HCD) content than type I fibres. In vegetarians, M-Carn is limited by hepatic synthesis of β-alanine, whereas in omnivores this is augmented by the hydrolysis of dietary supplied HCD’s resulting in muscle levels two or more times higher. β-alanine supplementation will increase M-Carn. The same increase in M-Carn occurs with administration of an equal molar quantity of carnosine as an alternative source of β-alanine. Following the cessation of supplementation, M-Carn returns to pre-supplementation levels, with an estimated t1/2 of 5–9 weeks. Higher than normal M-Carn contents have been noted in some chronically weight-trained subjects, but it is unclear if this is due to the training per se, or secondary to changes in muscle fibre composition, an increase in β-alanine intake or even anabolic steroid use. There is no measureable loss of M-Carn with acute exercise, although exercise-induced muscle damage may result in raised plasma concentrations in equines. Animal studies indicate effects of gender and age, but human studies lack sufficient control of the effects of diet and changes in muscle fibre composition

    Left main renal artery entrapment by diaphragmatic crura: spiral CT angiography

    Get PDF
    Entrapment of renal artery by the diaphragmatic crus is a rare cause of renal artery stenosis. Spiral computed tomography angiography provides a definitive diagnosis and shows the precise relationship of the artery to the diaphragmatic crus. The authors present a case of hypertension developing in a young 20-year-old female due to entrapment of the left renal artery by the diaphragmatic crus. This condition should be considered in young hypertensive patients with renal artery stenosis without cardiovascular risk factors

    Effects of β-alanine supplementation on exercise performance: a meta-analysis

    Get PDF
    Due to the well-defined role of β-alanine as a substrate of carnosine (a major contributor to H+ buffering during high-intensity exercise), β-alanine is fast becoming a popular ergogenic aid to sports performance. There have been several recent qualitative review articles published on the topic, and here we present a preliminary quantitative review of the literature through a meta-analysis. A comprehensive search of the literature was employed to identify all studies suitable for inclusion in the analysis; strict exclusion criteria were also applied. Fifteen published manuscripts were included in the analysis, which reported the results of 57 measures within 23 exercise tests, using 18 supplementation regimes and a total of 360 participants [174, β-alanine supplementation group (BA) and 186, placebo supplementation group (Pla)]. BA improved (P = 0.002) the outcome of exercise measures to a greater extent than Pla [median effect size (IQR): BA 0.374 (0.140–0.747), Pla 0.108 (−0.019 to 0.487)]. Some of that effect might be explained by the improvement (P = 0.013) in exercise capacity with BA compared to Pla; no improvement was seen for exercise performance (P = 0.204). In line with the purported mechanisms for an ergogenic effect of β-alanine supplementation, exercise lasting 60–240 s was improved (P = 0.001) in BA compared to Pla, as was exercise of >240 s (P = 0.046). In contrast, there was no benefit of β-alanine on exercise lasting <60 s (P = 0.312). The median effect of β-alanine supplementation is a 2.85% (−0.37 to 10.49%) improvement in the outcome of an exercise measure, when a median total of 179 g of β-alanine is supplemented

    Effect of β-alanine supplementation on 20 km cycling time trial performance

    Get PDF
    The effects of β-alanine supplementation on high-intensity cycling performance and capacity have been evaluated, although the effects on longer duration cycling performance are unclear. Nineteen UK category 1 male cyclists completed four 20 km cycling time trials, two before and two after supplementation with either 6.4 g•d -1 β-alanine (n = 10; BA) or a matched placebo (n = 9; P). Performance time for the 20 km time trial and 1 km split times were recorded. There was no significant effect of β-alanine supplementation on 20 km time trial performance (BA-pre 1943 ± 129 s; BA-post 1950 ± 147 s; P-pre 1989 ± 106 s; P-post 1986 ± 115 s) or on the performance of each 1 km split. The effect of β-alanine on 20 km time trial performance was deemed unclear as determined by magnitude based inferences. Supplementation with 6.4 g•d -1 of β-alanine for 4 weeks did not affect 20 km cycling time trial performance in well trained male cyclists

    Beta-alanine (Carnosyn™) supplementation in elderly subjects (60–80 years): effects on muscle carnosine content and physical capacity

    Get PDF
    The aim of this study was to investigate the effects of beta-alanine supplementation on exercise capacity and the muscle carnosine content in elderly subjects. Eighteen healthy elderly subjects (60–80 years, 10 female and 4 male) were randomly assigned to receive either beta-alanine (BA, n = 12) or placebo (PL, n = 6) for 12 weeks. The BA group received 3.2 g of beta-alanine per day (2 × 800 mg sustained-release Carnosyn™ tablets, given 2 times per day). The PL group received 2 × (2 × 800 mg) of a matched placebo. At baseline (PRE) and after 12 weeks (POST-12) of supplementation, assessments were made of the muscle carnosine content, anaerobic exercise capacity, muscle function, quality of life, physical activity and food intake. A significant increase in the muscle carnosine content of the gastrocnemius muscle was shown in the BA group (+85.4%) when compared with the PL group (+7.2%) (p = 0.004; ES: 1.21). The time-to-exhaustion in the constant-load submaximal test (i.e., TLIM) was significantly improved (p = 0.05; ES: 1.71) in the BA group (+36.5%) versus the PL group (+8.6%). Similarly, time-to-exhaustion in the incremental test was also significantly increased (p = 0.04; ES 1.03) following beta-alanine supplementation (+12.2%) when compared with placebo (+0.1%). Significant positive correlations were also shown between the relative change in the muscle carnosine content and the relative change in the time-to-exhaustion in the TLIM test (r = 0.62; p = 0.01) and in the incremental test (r = 0.48; p = 0.02). In summary, the current data indicate for the first time, that beta-alanine supplementation is effective in increasing the muscle carnosine content in healthy elderly subjects, with subsequent improvement in their exercise capacity
    corecore