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1 Introduction and summary

There has been much recent activity in the study and construction of new consistent

Kaluza-Klein truncations of supergravity theories [1–7]. Such truncations allow to identify

a subsector of the configuration space of a theory compactified on an internal manifold,

such that the dynamics are encoded in a lower-dimensional gauged supergravity and any

solutions of the latter lift to solutions of its higher-dimensional parent.

We will focus on consistent truncations that preserve as many supersymmetries as the

original theory.1 The problem of identifying such truncations is highly nontrivial. Until

recently, the only known class of internal spaces that allow a systematic construction of

consistent truncations have been group manifolds. Expanding the supergravity fields in

terms of left invariant forms on a Lie group guarantees consistency of the truncation by

symmetry arguments [11, 12]. The proof [13] that eleven dimensional supergravity on a

1For recent results on consistent truncations to less supersymmetric theories see [8–10].
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seven-sphere admits a consistent trucation to SO(8) gauged maximal supergravity [14, 15]

relied on much more non-trivial techniques [16] that can be seen as a precursor of the mod-

ern generalised and exceptional generalised geometries (EGG) [17–21].2 In fact, it is thanks

to the recently developed frameworks of EGG and the closely related extended/exceptional

field theories (ExFT) [27–35] that we now understand consistent truncations on spheres

systematically [1] in terms of generalised Scherk-Schwarz reductions (see also [36–40] for

earlier work). These formalisms allow to repackage the field content of a supergravity

theory in order to give a geometrical interpretation to their gauge symmetries and dual-

ities. The long-sought proof of consistency of the truncation of type IIB supergravity on

S5 to SO(6) gauged maximal supergravity in five dimensions relied on the ExFT frame-

work [2], and consistent truncations on spheres, hyperboloids, twisted tori and products

thereof are now well-understood [2, 7]. Results concerning sphere reductions of massive

IIA supergravity [4–6] have also been rephrased in terms of ExFT and EGG [41, 42].

The inverse problem of identifying which gauged supergravity theories admit an uplift

to ten and eleven dimensional supergravities is equally interesting and non-trivial. Gauged

supergravities have an intricate phenomenology of vacua, (super)symmetry breaking pat-

terns, black holes, branes, and domain wall solutions and identifying which models and

solutions are embedded in string/M-theory is important. The modern framework to de-

scribe gauged supergravities is the embedding tensor formalism [43–46] (see [47, 48] for

reviews and further references). In this formalism the gauge group and all gauge cou-

plings are specified by an object Θ α̂
A transforming in a specific representation of the global

symmetry group G×R+ of the ungauged theory. Consistency of the resulting gauged super-

gravity is encoded into a set of algebraic constraints on the embedding tensor. It is natural

to expect that the requirements for a gauged supergravity to admit an higher dimensional

uplift should be phrased in terms of additional constraints on the embedding tensor.

Important examples of gauged supergravities not admitting a geometric uplift are

the ω-deformed SO(8) gauged supergravities of [49]. Attempts to find an origin in eleven-

dimensional supergravity for these gaugings found an obstruction [50] and a no-go result was

proven later [51]. There is a large class of gaugings descending from the ω-deformed SO(8)

ones by analytic continuation and contraction [52–54]. These are ω-deformed SO(p, q),

CSO(p, q, r), and ‘dyonic CSO’ gaugings. All these gaugings have been uplifted [2, 4–7]

except for the ω-deformed SO(p, q) models, for which however the no-go result of [51] does

not apply. It is therefore an open problem to prove whether these models admit a geometric

uplift or not.

In (exceptional) generalised geometry as well as in doubled [55–59] and extended field

theory the diffeomorphisms and gauge symmetries along the internal manifold are packaged

in terms of a generalised Lie derivative L with parameters living in an extended tangent

space and comprising infinitesimal generators for the internal diffeomorphisms and p-form

gauge transformations. Fields are repackaged to fill out representations of the duality group

G ×R+ that becomes the global symmetry of the lower-dimensional supergravity theory if

2See [22] for extra recent results on the S7 truncation, [23] for a similar rewriting of type IIB supergrav-

ity, [3] for hyperboloid reductions based on the same techniques, and [4, 6] for type IIA supergravity on a

six-sphere. Also see [24–26] for other sphere reductions.
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the compactification space is taken to be a standard torus. The main difference between the

two formalisms is that in DFT/ExFT the coordinates of the internal space are formally

extended to cover a full representation of G × R+ and a section (or strong) constraint

is imposed to determine which of these coordinates are physical. Upon solution of the

constraint one recovers a standard supergravity theory written in terms of an appropriate

generalised geometry.

Generalised Scherk-Schwarz reductions are obtained by expanding the supergravity

fields in terms of a generalised Leibniz parallelisation, namely a global frame ÊA for the

generalised tangent bundle satisfying

LÊAÊB = −X C
AB ÊC , (1.1)

where X C
AB are constants. The expansion coefficients are allowed to depend only on the

D dimensional external spacetime coordinates and not on the internal ones. Their equa-

tions of motion3 become those of a gauged supergravity where X C
AB is identified with the

embedding tensor.4 We can extend (1.1) to include deformations of the structure of the

generalised tangent bundle and Lie derivative induced by massive and/or gauged deforma-

tions of the underlying supergravity theory (e.g. the Romans mass deformation of type IIA

supergravity [41, 42]). The more general condition for a Leibniz parallelisation becomes

LÊAÊB + F̂ 0(ÊA)ÊB = −X C
AB ÊC . (1.2)

where F̂ 0(ÊA) is a linear non-derivative operator encoding the massive/gauged deformation

of the target higher-dimensional theory. The general constraints for consistency of such

deformations were analysed in [41].

It is clear that the problem of finding what spaces admit a generalised Leibniz paral-

lelisation and for what values of X C
AB is much more complicated in generalised geome-

tries and ExFT’s than the analogous problem is in standard differential geometry, where

any consistent Lie algebra structure constants define a parallelisable manifold which is (a

global form of) the associated Lie group. So far there has been no general procedure to

construct generalised Leibniz parallelisations. Some progress in this direction has recently

been made, reproducing some results specific to DFT [62] and to four-manifold reductions

of SL(5) ExFT [63]. In this paper we solve the problem entirely, by taking a ‘bottom-up’

approach. The procedure we derive applies to double, exceptional and any other extended

field theories, including mass-deformed and gauged ones [41] (see also [38]), as long as their

generalised Lie derivative closes without the need for constrained gauge parameters (i.e.,

we do not include E8(8) ExFT [33]). We provide necessary and sufficient conditions for an

embedding tensor to give rise to a generalised Leibniz parallelisation (1.2), determining the

3We will always refer to consistent truncations of the classical equations of motion. Avoiding reference

to an action principle allows us to include trombone gaugings [60, 61].
4Strictly speaking we should restrict ourselves to theories with sixteen supercharges or more for which

X C
AB encodes the same information as the embedding tensor Θ α̂

A . This is the lowest amount of super-

symmetry allowed in ten dimensions. For theories with less supercharges our setup is still correct as long

as no matter (e.g. hypermultiplet) symmetries are gauged. We will refer to both X C
AB and Θ α̂

M as the

embedding tensor.
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internal space as well as ÊA and F̂ 0 in the process. This defines a consistent generalised

Scherk-Schwarz uplift of the associated gauged supergravity. We do so by first showing

when and how one can solve (1.2) locally on a coordinate patch, and then providing a

global extension. An advantage of our approach is that because we start locally, we can

employ the formalism of ExFT to capture many generalised geometries at once. The choice

of solution of the section constraint (and hence ultimately the higher dimensional theory

to which we uplift our gauged supergravity) is dictated by X C
AB itself. Instead of looking

for solutions of (1.2) for a given EGG, we span an entire class of theories at once.

We summarise here the structure and main results of this paper. In section 2 we review

some basic aspects of the embedding tensor formalism and of ExFT/EGG, deriving some

useful properties of the torsion of a generalised frame as well as the general consistent

conditions for flux, massive and gauged deformations of the generalised Lie derivative,

extending the recent analysis of [41].

The embedding tensor appearing on the right hand side of (1.2) can be rewritten as

X C
AB = Θ α̂

A t C
α̂B where t C

α̂B generate G × R+. It defines the gauging of a subgroup

G ⊂ G × R+. In section 3 we provide the most general solution of (1.2), focussing first on

the subclass of parallelisations in which the non-vanishing vector components of ÊA are

valued in the adjoint representation of G specified by Θ α̂
A . We later lift this restriction,

although it is worth noticing that, to this date, the known examples of generalised Leibiniz

parallelisations belong to this restricted class. There are some requirements for generalised

Leibniz parallelisation to exist, and we begin with a local analysis. Focussing on the

restricted class just described, in order to solve (1.2) we must search for a subgroup H ⊂ G

such that the projection Θ m
A of the embedding tensor on the H\G coset space generators

tm satisfies the section constraint

Y AB
CDΘ m

A Θ n
B = 0 , (1.3)

where the G × R+ invariant tensor Y AB
CD appears in the generalised Lie derivative. A

second, linear constraint on Θ m
A (see (3.16)) might also be required depending on the

theory and specific gauging. It can be avoided for exceptional field theories if X C
AB does

not gauge the trombone symmetry of the higher-dimensional supergravity. The coset space

H\G will be (part of) the internal manifold. Out of the local data on the coset space we

construct a local frame E M
A satisfying

LEAE
M

B − E P
A E Q

B F M
PQ = −X C

AB E M
C , (1.4)

where F M
PQ is a local version of F̂ 0, but can also encode background p-form field strengths

and twists by global symmetries (including trombone scalings) of the higher-dimensional

theory. The frame E M
A can also encode similar contributions, so that the final background

is only obtained combining the two objects. The proof that F M
PQ satisfies all necessary

consistency conditions so that our solution of (1.4) is locally equivalent to a solution of (1.2)

is one of the main results of this paper. The objects in (1.4) do not necessarily extend

correctly to a global frame and global fluxes, but it is possible to construct the latter

out of E M
A and F P

MN if some conditions are met. The deformations F̂ 0 also determine
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whether the internal space can be extended with extra flat directions, becomingMinternal =

H\G× Tn.

Lifting the requirement that the vector components of the frame only sit in the adjoint

representation of G, we find that only minor modifications to our procedure must be imple-

mented, which is taken care of in section 3.4. In particular, the most general parallelisable

space turns out to be a torus fibration over a coset space H\G

Minternal '
loc.

H\G× Tn . (1.5)

where H\G, by itself, belongs to the class of generalised Leibniz parallelisable spaces de-

scribed above and the fiber is determined by a central extension of the gauge algebra, again

entirely dictated by the embedding tensor.

In section 4 we discuss several examples. We start by showing that our procedure

reproduces standard group manifold reductions as a special case, as well as the consistent

Pauli reductions of [64]. Then we move to the uplifts of (maximal) supergravities with

gaugings of SO(p, q) and CSO(p, q, r) groups. We focus on the four-dimensional case where

there is a very rich structure for such gaugings [49, 52, 54]. In particular, we prove a

no-go result for the uplift of the non-compact versions of the ω-deformed SO(p, q) gaugings

discussed in [49, 54], extending the previous negative result of [50] and the no-go of [1],

which only applied to the compact gauging SO(8). We also find that all electric CSO(p, q, r)

gaugings with r 6= 0 admit an uplift on Tp+q with a locally geometric flux which is analogous

to the Q-flux of the NSNS string. Our procedure identifies this uplift in terms of a globally

defined frame on Rn.

We stress that H\G need not be a compact manifold, although we can certainly choose

to impose such a restriction. If the coset space is non-compact, we might want to quotient

it by the (free) action of some discrete group Γ ⊂ G. In general the global frame defined on

H\G becomes multivalued on the quotient space and the resulting background can at best

be interpreted as a U-fold geometry where fields jump by G × R+ transformations along

the internal space. Simple examples of such situation are the locally geometric Q-flux in

type II and heterotic supergravity and the more general examples discussed in section 4.

We make a few extra comments on this point in section 5, where we conclude.

2 Some prerequisites

2.1 Gauged supergravities

We denote the global symmetries of the lower-dimensional supergravity theory — the one

we want to gauge and uplift — as G×R+, the second factor being the trombone symmetry.5

These symmetries can be gauged by promoting to local a subgroup G ⊂ G × R+ and

using the vector fields AAµ of the theory to construct the gauge connection. Schematically

(ignoring all other covariantisations), the spacetime derivative is covariantised as

∂µ → Dµ ≡ ∂µ −AAµXA , (2.1)

5Every supergravity theory has one global trombone symmetry R+ acting as a rescaling of all fields

including the metric [65].
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D 9 8 7 6 5 4

G SL(2)× R+ SL(2)× SL(3) SL(5) SO(5, 5) E6(6) E7(7)

Rv 23 + 1−4 (2, 3′) 10′ 16c 27 56

RΘ 2−3 + 34 (2, 3) + (2, 6′) 15 + 40′ 144c 351′ 912

adj 3 + 1 (3, 1) + (1, 8) 24 45 78 133

Table 1. Relevant representations for the duality groups of the maximal supergravities.

where XA are the generators of the gauge group. Because there are usually more vectors

that gauge generators, XA may form a redundant basis and/or have vanishing entries. It

is entirely specified by an embedding tensor Θ α̂
A as

XA ≡ Θ α̂
A tα̂ , α̂ = 0, 1, . . . , dimG , (2.2)

where tα̂ generate G × R+.

Closure of the gauge algebra is guaranteed by a quadratic constraint

[XA, XB] = −X C
AB XC , (2.3)

where X C
AB ≡ Θ α̂

A t C
α̂B are the gauge group generators in the Rv representation of

G × R+, which is the (conjugate of the) one in which the vector fields transform. We

will often refer to X C
AB itself as the embedding tensor. Crucially for our purpose, (2.3)

determines that X C
AB can be seen as structure constants of a Leibniz algebra. This is more

general than a Lie algebra, as X C
(AB) need not vanish and correspondingly, the standard

Jacobi identity of Lie algebras is not satisfied by X C
AB .

A general embedding tensor transforms in the G representation

Θ α̂
A ∈ Rv ⊗ (adj + 1) , (2.4)

where the singlet corresponds to the trombone component just described. Consistency

(supersymmetry and counting of degrees of freedom) of the gauged supergravity restricts

the non-trombone components of the embedding tensor to a subset of the irreps contained

in the tensor product Rv ⊗ adj:

Θ α̂
A ∈ RΘ + Rv ⊂ Rv ⊗ (adj + 1) . (2.5)

The relevant representations are exemplified in table 1 for the case of gauged maximal

supergravities.

2.2 Generalised geometries and extended field theories

Exceptional and extended field theories (ExFT) can be seen as a generalisation of the

ideas of double field theory (DFT) [55–59], and are related to (exceptional) generalised

geometry (EGG) [17–21] in a way similar to how DFT is related to complex generalised

geometry. The bosonic sector of ExFT looks similar to a gauged supergravity (usually

maximal or half-maximal), with a metric, p-form fields, and scalar fields parameterising a

– 6 –
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coset space G/H (H being the maximal compact subgroup), all living on a D-dimensional

‘external’ spacetime but also formally carrying dependence on an extended set of internal

coordinates YM filling the Rv representation of G. All fields transform covariantly under

the duality group G × R+. Internal gauge symmetries are, instead of a Lie group as for

gauged supergravity, an infinite set of transformations called generalised diffeomorphisms

acting on covariant fields via a generalised Lie derivative L. The structure and dynamics

of the theory are essentially fixed by enforcing invariance under the internal symmetries

and Y -dependent diffeomorphisms on the external spacetime [30–33, 66]. Consistency of

the generalised diffeomorphisms will reduce the dependence on YM of fields and gauge

parameters to only a subset ym of physical internal coordinates, with m = 1, . . . , d. The

resulting theory is a rewriting of a supergravity theory in D + d dimensions where fields

are re-packaged in terms of an EGG defined on the internal d dimensional space. The gen-

eralised diffeomorphisms encode all the local symmetry transformation of the supergravity

theory with parameters living on the internal space. If all the dependence on internal co-

ordinates is removed, ExFT reduce to D-dimensional ungauged supergravities with global

symmetry group G × R+. We will only be concerned with the structure of the internal

gauge symmetries of ExFT.

The generalised Lie derivative can be defined by its action on a generalised vector VM ,

M being an index in the Rv representation of the duality group, as

LΛV
M ≡ ΛN∂NV

M − V N∂NΛM + YMP
QN∂PΛQV N + (λ− ω)∂NΛNVM

= ΛN∂NV
M + αP M Q

N P ∂PΛQV N + λ∂NΛNVM .
(2.6)

where P M Q
N P is the projector on the Lie algebra of G, α is a constant which depends on

the specific duality group, and ω is a characteristic weight, also dependent on the specific

theory. All vectors we will be dealing with have density weight λ = ω. The relation between

the projector and the invariant tensor YMN
PQ is

YMN
PQ = δMP δ

N
Q + ωδNP δ

M
Q − αP M Q

N P . (2.7)

Closure and the Jacobi identity of the generalised Lie derivative can be rewritten as

[LΛ, LΣ]ΓM − L[Λ,Σ]Γ
M = 0 , L{Λ,Σ}ΓM = 0 . (2.8)

Strictly speaking, the second condition is not the Jacobi identity itself, but implies it [29].

The brackets are defined as

[Λ, Σ] ≡ 1

2
(LΛΣ− LΣΛ) , {Λ, Σ} ≡ 1

2
(LΛΣ + LΣΛ) . (2.9)

Requiring (2.8) to hold for arbitrary parameters Λ, Σ and Γ restricts the dimensionality of

the internal space according to the following constraints [29]

YMN
PQ∂M∂N = 0 , (2.10a)

(YMP
RSδ

Q
N−Y

MP
TNY

TQ
RS)∂(P∂Q) = 0 , (2.10b)

(YMP
TNY

TQ
[SR]+2YMP

[R|TY
TQ

S]N−Y
MP

[RS]δ
Q
N−2YMP

[S|Nδ
Q
R])∂(P∂Q) = 0 , (2.10c)

(YMP
TNY

TQ
(SR)+2YMP

(R|TY
TQ

S)N−Y
MP

(RS)δ
Q
N−2YMP

(S|Nδ
Q
R))∂[P∂Q] = 0 . (2.10d)

– 7 –



J
H
E
P
1
2
(
2
0
1
7
)
1
2
4

In all ExFT’s discussed so far in the literature, (2.10b)–(2.10d) are implied by (2.10a),

which is referred to as the section constraint [29]. The two derivatives can act either on

the same field (or products of fields) or on different ones (or products), which motivates

the symmetrisations. This means that (2.10) must be solved algebraically by writing

∂M ≡ E m
M ∂m , (2.11)

where E m
M is a constant rectangular matrix of maximal rank satisfying the constraints

above, and ∂m are the physical internal derivatives. Clearly there will be upper bounds to

the dimensionality of the internal space. We will always assume that the section constraint

is satisfied and will often leave contraction with E m
M as understood, writing for example

Λm ≡ ΛME m
M , so that the section constraint becomes Y mn

PQ = 0. Two choices of E m
M

are equivalent if they are related by G × R+ acting on the Rv index. Each inequivalent

solution of the section constraint determines an EGG on the internal space with coordinates

ym and derivatives ∂m. For instance, the maximal solutions of the section constraint in

exceptional field theory reproduce the series of EGG’s of eleven-dimensional supergravity

and type IIB supergravity [30–32].

Once we have fixed our choice of E m
M we can identify a few important subgroups of

G × R+. First, there is a subgroup GL(d) such that m corresponds to the fundamental

index and

g N
M E n

N g−1m
n = E m

M , g ∈ GL(d) ⊂ G × R+ . (2.12)

This is identified with the (standard) structure group of the internal manifold. Second,

there is a subgroup (G0×R+
0 )nP0 where G0×R+

0 commutes with GL(d) and P0 is generated

by a nilpotent algebra, such that

U N
M E m

N = E m
M , U N

M ∈ (G0 × R+
0 ) n P0 ⊂ G × R+ . (2.13)

The unipotent group P0 corresponds to shifts of the p-form potentials of the higher-

dimensional supergravity theory and completes GL(d) to the (split) generalised structure

group of the generalised tangent bundle

GL(d) n P0 . (2.14)

Transition functions on the generalised tangent bundle take values in this group. The

G0×R+
0 group corresponds to internal global symmetries for the higher dimensional theory,

R+
0 being its trombone symmetry. If the higher dimensional theory is gauged and/or

massive, these are the global symmetries of its ungauged, massless sibling.

The consistent truncation of a supergravity theory living in D+d dimensions down to a

D-dimensional gauged supergravity with the same amount of supersymmetries is obtained

by identifying a frame ÊMA (y) on the internal manifold satisfying the Leibniz parallelisation

condition (1.2). Then, all the ym dependence of the fields is factorised in terms of ÊMA (y)

and y-independent coefficient fields that will become the gauged supergravity fields. A

thorough discussion of this factorisation process, taking into account the truncation of the

tensor hierarchy associated with the internal gauge structure is carried out in [2].

– 8 –
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2.3 Torsion induced by a generalised frame

Let us now introduce the torsion associated with a frame E M
A and summarise some of

its properties. As a matrix, the frame is an element of G × R+. Its torsion T C
AB can be

defined as

LEAE
M

B ≡ −T C
AB E M

C , (2.15)

and is usually ym-dependent. The indices A,B,C, . . . are spectators with respect to the Lie

derivative. A more explicit expression is written in terms of the (generalised) Weitzenböck

connection coefficients

W C
AB ≡ E m

A E N
B ∂mE

C
N , (2.16)

T C
AB ≡ 2W C

[AB] + Y CD
EBW

E
DA . (2.17)

Because YMN
PQ is by definition invariant under G×R+, we can also write it with spectator

indices as done above. The torsion sits in the same G × R+ representations RΘ + Rv as

the embedding tensor of gauged supergravity.

We now consider the generalised Lie derivative of two objects ΛAE M
A , ΣAE M

A , where

both ΛA and ΣA are ym-dependent and arbitrary. Their generalised Lie derivative can be

written as

LΛAEA(ΣCE M
C ) =

=
(
ΛAE m

A ∂mΣC − ΣAE m
A ∂mΛC + Y CD

EFE
m

D ∂mΛEΣF − ΛAΣBT C
AB

)
E M
C .

(2.18)

Because all the objects in these expressions satisfy the section constraints, this generalised

Lie derivative satisfies the closure and Jacobi relations (2.8):

[LΛAEA , LΣBEB ](ΓCE M
C )− L[ΛAEA,ΣBEB ](Γ

CE M
C ) = 0 , (2.19)

L{ΛAEA,ΣBEB}(Γ
CE M

C ) = 0 . (2.20)

These expressions imply some useful properties for T C
AB . First, combining (2.19)

and (2.20) and taking ΛA, ΣB and ΓC to be constant, we arrive at an expression that

generalises the closure constraint of the embedding tensor to a ym-dependent torsion:6

T F
AC T D

BF − T F
BC T D

AF + T F
AB T D

FC +

+ E m
A ∂mT

D
BC − 2E m

[B ∂mT
D

|A|C] − Y
DF

GCE
m

F ∂mT
G

AB = 0 .
(2.21)

Notice that the last two terms correspond to a torsion projection on the indices BCD

analogous to (2.17).

Substituting (2.21) into (2.20) and taking ΣB and ΓC constant (but not ΛA), we arrive

at an expression which is analogous to the C-constraint of [41], but with some extra terms:[
T A

(CD) δBF − Y AB
HFT

H
(CD) −

1

2
Y HB

CDT
A

HF +

− 1

2

(
Y AH

CDδ
I
F − Y AI

JFY
JH

CD

)
W B
HI

]
E m
B = 0 .

(2.22)

6An analogous computation was performed in [39].
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This expression is covariant under generalised diffeomorphisms by virtue of (2.10b). We

stress again that (2.21) and (2.22) are properties automatically satisfied by the torsion of

a frame E M
A .

2.4 Deformations of generalised diffeomorphisms

Let us now consider a different situation, expanding on the analysis of [41]. We introduce a

torsion-like term F P
MN , which we dub the generalised flux, in the generalised Lie derivative.

It also sits in the RΘ + Rv representations. We do not assume that it arises from some

(local) frame as was the case for the last term in (2.18). We define a deformed generalised

Lie derivative L̃ as

L̃ΛΣM ≡ Λm∂mΣM − Σm∂mΛM + YMm
PQ∂mΛPΣQ − ΛPΣQF M

PQ . (2.23)

Notice that compared to (2.18), there are no ‘spectator’ indices here. Because we have

introduced F P
MN by hand, this time we have no guarantee that L̃ satisfies closure and

Jacobi relations analogous to (2.8). We must thus impose

[L̃Λ, L̃Σ]ΓM − L̃[Λ,Σ]FΓM = 0 , L̃{Λ,Σ}FΓM = 0 . (2.24)

The new brackets are

[A, B]F ≡
1

2
(L̃AB − L̃BA) , {A, B}F ≡

1

2
(L̃AB + L̃BA) . (2.25)

The resulting constraints that F P
MN must satisfy have been analysed in [41] assuming

constancy of F P
MN and absence of the trombone component: F P

MP = 0. Here we directly

write the final requirements for a general F P
MN (satisfying the section constraint). First,

the generalised flux must satisfy the ‘X-’ and ‘C-constraints’ of [41], which are not equiv-

alent for a generic theory and for non-vanishing trombone components. These constraints

read respectively

F P
MN E m

P = 0 , (2.26)

C[F ] MN
SPQ E m

N ≡
(
F M

(PQ) δNS − YMN
TSF

T
(PQ) −

1

2
Y TN

PQF
M

TS

)
E m
N = 0 . (2.27)

Second, the generalised flux must satisfy a generalised Bianchi identity not dissimilar

to the torsion property (2.21):7

F R
MP F Q

NR − F R
NP F Q

MR + F R
MN F Q

RP +

+ E m
M ∂mF

Q
NP − 2E m

[N ∂mF
Q

|M |P ] − Y
QR

SPE m
R ∂mF

S
MN = 0 .

(2.28)

This expression reduced to the embedding tensor closure constraint in the analysis of [41].

The constraint (2.26) guarantees in particular that F P
MN does not affect the alge-

bra of standard internal diffeomorphisms, generated by vectors of the schematic form

ΛM = (Λm, 0 . . . 0), i.e. non-vanishing only along the tangent space components. Thus

7This expression was derived with Franz Ciceri and Adolfo Guarino in the making of [41] and [67].
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the generalised flux induces deformations of the internal gauge symmetries of the super-

gravity associated with the extended generalised geometry. Such deformations can be due

to background p-form fluxes, twists of the field content by coordinate-dependent G0 × R+
0

transformations,8 massive deformations, and gaugings. The requirements above guaran-

tee that the resulting set of gauge symmetries is consistent. Indeed, the analysis of [41]

already shows that F P
MN reproduces exactly the standard p-form fluxes of 11d and type

II supergravities (assuming the respective solutions of the section constraint are adopted),

including the Romans mass in type IIA and a triplet of SL(2) one-form fluxes in type

IIB supergravity. A similar analysis was carried out for SL(2)-DFT in [67]. Here we are

extending the analysis to non-constant fluxes and also allow for a ‘trombone flux’ arising

by coordinate dependent trombone rescalings of the higher-dimensional fields.9

One more useful property of the generalised flux is its Lie derivative. We assign

density weight −ω to F P
MN for consistency of the deformed Lie derivative L̃. Using

the C-constraint we find [41]

LΛF
P

MN = Λm∂mF
P

MN + 2E m
[M ∂mΛTF P

|T |N ] + Y PS
RNE m

S ∂mΛTF R
TM . (2.29)

It should be stressed that most components of F P
MN can be re-absorbed into a twisting

of the covariant tensors by some (locally defined) matrix C(ym) N
M satisfying

C N
M E m

N = E m
M , (2.30)

so that the induced flux is the torsion projection (2.17) of E m
M ∂mC

Q
N C−1P

Q and it satis-

fies (2.26), (2.27) and (2.28) automatically. The matrix C N
M will be determined by the

p-form potentials associated with fluxes in F P
MN , and thus be only defined patch-by-patch

in the internal space. This is analogous to the twisting procedure discussed in [19–21] to lo-

cally map the generalised tangent bundle into global vectors and p-forms, although we must

stress that in the current local setup further twistings are allowed, such as those inducing

dilaton flux (or the full triplet of SL(2,R) Scherk-Schwarz flux in Type IIB supergravity),

and the one associated with a non-vanishing trombone component. These extra twists by

global symmetries necessarily correspond to 1-form GL(d) components of F P
MN , because

the associated C N
M is a GL(d) singlet. On the other hand, components of F P

MN taking

values in the algebra of G0 × R+
0 and being GL(d) singlets will not be integrable and will

necessarily correspond to embedding tensor components of the higher dimensional theory.

3 Generalised Leibniz parallelisations from gauged supergravity

3.1 Local uplift

We now come to the main part of this paper. Suppose we have a gauged supergravity

with embedding tensor X C
AB satisfying the representation and quadratic constraints. In

8For instance, in type IIB supergravity there is an SL(2) triplet of 1-form fluxes including the RR F1

and the dilaton flux. They originate from a coordinate dependent SL(2) twists of the fields of the theory,

analogous to the compactifications with duality twists of [68].
9We can regard trombone gauged IIA supergravity [69] as arising from eleven-dimensional supergravity

exactly through such a ‘trombone flux’ compactification on a circle.
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order to find an uplift of such theory to a higher dimensional supergravity with the same

amount of supersymmetries, we need to find a frame Ê M
A and possibly some non-trivial

deformation F̂ 0 P
MN satisfying (2.26), (2.27) and (2.28) such that the generalised Scherk-

Schwarz condition is satisfied:

LÊAÊ
M

B − Ê P
A Ê Q

B F̂ 0 M
PQ = −X C

AB Ê M
C . (3.1)

As we show below, we find it more convenient to allow part of Ê M
A to be absorbed in the

generalised flux F P
MN , so that one can look for the equivalent requirement

L̃EAE
M

B = −X C
AB E M

C , Ê M
A ≡ E N

A C M
N , (3.2)

provided F P
MN satisfies all consistency constraints.10

Let us assume that a generalised frame ÊA satisfying (3.1) exists for a solution of

the section constraint determined by E m
M . Then, Ê M

A E m
M ≡ K m

A are vectors with

(standard) Lie bracket

[KA, KB] = −X C
AB KC . (3.3)

A first consequence of (3.3) is that X C
(AB) KC = 0. Exploiting this fact we conclude that

projecting either the index A or the index B onto the left kernel of Θ a
A , the right hand

side of (3.3) vanishes. Therefore we can write

X C
(AB) KC = 0 , [KA, KB] = Θ a

A Θ b
B (f c

ab Kc + h c0
ab Kc0) , (3.4)

where h c0
ab = h c0

[ab] are components of the embedding tensor encoding a central extension

of the G algebra (see for instance [46]) and c0 runs over entries different than a, b, c. For

simplicity in this and in the next section we will assume that the only non-vanishing vector

components of ÊA are the G vectors Ka, so that Ê M
A E m

M = Θ a
A K m

a . Once this case is

well-understood, the extension of the procedure in presence of central charges turns out to

be relatively straightforward and we discuss it in section 3.4.

Because ÊA is everywhere non-vanishing, this implies that there are always d linearly

independent vectors among the Ka at each point on the manifold and therefore we have

a homogeneous space H\G with Ka generating the transitive action of G on the manifold

(up to a dicrete quotient that commutes with the transitive action of G, see section 5). We

introduce the coset representatives L(y) of H\G with transformation property

L(y)g = h(y′)L(y′) , g ∈ G , h(y) ∈ H . (3.5)

Out of the coset representative we can define the Cartan-Maurer form Ω, reference Vielbein

e̊ and H connection Q

Ωm ≡ ∂mLL−1 ≡ e̊ m
m tm +Q i

m ti , (3.6)

where i runs along the algebra of H. Following the standard construction of vectors gen-

erating the transitive action of G on the coset space, we see that the infinitesimal version

of (3.5) implies

Θ a
A K m

a = (LXAL
−1)|me̊ m

m = L−1B
A Θ m

B e̊ m
m (3.7)

10The generalised flux also contains the information originally encoded into F̂ 0.
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where |m is the projection onto the coset generators defined by an expansion analogous

to (3.6) and in the last step we have used gauge invariance of the embedding tensor. We

thus conclude that

Ê M
A E m

M e̊ m
m = L−1B

A Θ m
B . (3.8)

Because the left hand side satisfies the section constraint, so does the right hand side,

which implies that as a matrix Θ m
A can only differ from E m

M by a G ×R+ transformation

(which we can reabsorb in ÊA) and that it must satisfy the section constraint

Y AB
CDΘ m

A Θ n
B = 0 . (3.9)

This means that we can map the extended internal space derivatives ∂M into the physical

internal derivatives ∂m as

∂M ≡ E m
M ∂m , E m

M = δ A
M δ m

m Θ m
A . (3.10)

From now on we will simply write Θ m
M in place of E m

M .

It is now helpful to notice that as matrices, e̊ m
m and its inverse e̊ m

m are elements of

GL(d) and have a natural embedding into G × R+ which reads

e̊ A
M , e̊ M

A ∈ GL(d) ⊂ G × R+ . (3.11)

Notice in particular that (3.9) implies

e̊ A
M Θ m

A = Θ m
M e̊ m

m , e̊ M
A Θ m

M = Θ m
A e̊ m

m . (3.12)

At this point we notice that any two candidate expressions for Ê M
A that are equal

along the vector components can only differ by terms absorbable into the generalised flux

F P
MN through some locally defined matrix C N

M , as done going from (3.2) to (3.1). This

means that there is no loss of generality in seeking local solutions of (3.1) by solving

instead (3.2) with the Ansatz11

E M
A ≡ L−1B

A e̊ M
B , (3.13)

and the flux will just be the difference between the torsion of E M
A and the embedding

tensor, dressed with the frame itself

F P
MN = E ◦ (X − T ) P

MN , (3.14)

where for convenience we will often use the shorthand notation

E ◦X P
MN ≡ E A

M E B
N X C

AB E P
C . (3.15)

11This is similar to the expression provided in [63] for the specific case of consistent truncations from

eleven to seven dimensions via SL(5) ExFT. There should be an exact match when we restrict to their

case. However notice that we do not need to introduce the necessary background flux by hand, as it will

be automatically generated in our procedure.
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For E M
A and F P

MN to extend to globally well-defined objects the definitions above must

be amended without affecting the final result (3.2). This is done in section 3.3 and in

appendix A. It is however more convenient to locally solve (3.2) using the definitions above.

One may worry that the definition (3.14) renders (3.2) trivial as we are just subtracting

the torsion of E M
A from the required result. This is not so because F P

MN is severely

restricted by the consistency conditions (2.26), (2.27) and (2.28). An important part of

our work is to prove that (3.14) satisfies these constraints.

Let us make a short summary. What we have found so far is that any solution to (3.1)

for a given choice of X C
AB (and a-priori undetermined F̂ 0) such that the only non-vanishing

vector components of ÊA are the G vectors Ka, can be locally encoded into a frame

E M
A and a flux F P

MN satisfying (3.2) and the flux consistency conditions (2.26), (2.27)

and (2.28). We have also found that a necessary requirement for such uplifts to exists is

that the projection of the embedding tensor onto tm satisfies the section constraint (3.9).

The restriction on the vector components will be lifted in section 3.4.

In all cases where the ‘C-’constraint (2.27) is implied by (2.26) the section con-

straint (3.9) is sufficient for consistency of the local solution. This is the case in particular

for double and exceptional field theories, as long as F P
MN does not involve a gauging of

the trombone [41].12 We will see below that this can be avoided by requiring that X C
AB

does not gauge a certain R+
0 ⊂ G × R+ corresponding to the trombone symmetry of the

higher dimensional theory. Whenever (2.26) and (2.27) are inequivalent we find that a

further linear requirement must be imposed on the embedding tensor:

C[X] AB
FCD Θ m

B +
1

4

(
Y AH

CDδ
I
F − Y AI

JFY
JH

CD

)(
X B
HI + 2Θ m

(H t B
mI)

)
Θ m
B = 0 ,

(3.16)

where C[X] is defined as in (2.27). This is a necessary requirement for consistency of

F P
MN as we will show in the proof. Because F̂ 0 P

MN differs only by terms induced by some

C N
M , which cannot induce a violation of (2.27), the requirement (3.16) is also necessary

for consistency of F̂ 0 P
MN .

An important consequence of (3.9) is that

H ⊂ (GL(d)× G0 × R+
0 ) n P0 , (3.17)

where GL(d)nP0 is the generalised structure group on the internal manifold and G0×R+
0

are the global symmetries of the higher dimensional theory13 living in D + d dimensions.

To prove this we take a transformation h ∈ H and use gauge invariance of Θ α
A to write

h B
A Θ α

B = Θ β
A h α

β . Combining this with closure of H we arrive at

h B
A Θ m

B = Θ n
A h m

n . (3.18)

Mapping this to an action on ∂M , we have

h N
M ∈ H , h N

M ∂N = h N
M Θ m

N ∂m = Θ n
M h m

n ∂m (3.19)

12A counterexample is SL(2)-DFT [67].
13In its ungauged, massless flavour.
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which means by definition that h N
M acts on ∂M as a GL(d) transformation on the physical

∂m, respecting the choice of solution of the section constraint. The most general transfor-

mation with this property is indeed of the type in (3.17).

Another important consequence of our requirements is that Θ m
A is by definition GL(d)

invariant (when acting on both indices), which in turn guarantees consistency of the iden-

tification (3.10). For future use, we also stress that the quadratic constraint (2.3) implies

in particular a symmetrised version of (2.26) for X C
AB :

X C
(AB) Θ m

C = 0 . (3.20)

3.2 Proof of consistency

We begin by proving that the flux (3.14) satisfies (2.26). This is guaranteed by E m
A =

Θ a
A K m

a and (3.4), which tells us that (T C
AB −X C

AB )E m
C = 0 and in turn, by conjugation

with the frame, gives us (2.26).

It is useful to map this simple proof to a property of the Weitzenböck connection.

Multiplying by L(y) the expression above and using the gauge invariance of X C
AB we

arrive at (
L ◦ T C

AB −X C
AB

)
Θ m
C = 0 (3.21)

and using (2.17) and the section constraint we finally obtain

L ◦ T C
AB Θ m

C = 2L ◦W C
[AB] Θ m

C = X C
AB Θ m

C . (3.22)

Notice how consistency of this identity relies on the identification of the solution of the

section constraint E m
M with Θ m

M , which guarantees antisymmetry of the right hand side,

cf. (3.20).

We must now prove the C-constraint (2.27) for F P
MN . For double and exceptional

field theories this requirement is redundant as long as F P
MN does not contain a trombone

component [41], but it needs to be proven for all other cases. Substituting (3.14) into (2.27),

recalling E m
M = Θ m

M , using (2.22) and re-dressing the expression with e̊ M
A we arrive at

C[X] AB
FCD Θ m

B = −1

2

(
Y AH

CDδ
I
F − Y AI

JFY
JH

CD

)
L ◦W B

HI Θ m
B . (3.23)

The HI-antisymmetric part of L ◦W B
HI Θ m

B is already given in (3.22). We are only left

with evaluating the contribution of the symmetric part. To this purpose we evaluate the

Weitzenböck connection coefficients from (3.13) to find

L ◦W B
HI = Θ n

H (ẘn + e̊ m
n Ωm) B

I = Θ n
H (ẘn + tn + e̊ m

n Qm) B
I , (3.24)

where ẘ p
mn ≡ e̊ m

m e̊ n
n ∂me̊

p
n appears in (3.24) embedded into the Lie algebra of G × R+

analogously to how we embedded e̊ in (3.11).14 Symmetrising in HI and contracting with

14For GL(d) algebra elements such as ẘ an explicit expression for this embedding is

ẘ B
mA ≡ ẘ p

mn Θ n
C Θ̄ D

p

(
δCAδ

B
D − Y BCDA

)
, (3.25)

where Θ̄ A
m is the unique pseudoinverse of Θ m

A such that the projector Θ m
A Θ̄ B

m is orthogonal.
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Θ m
B we notice that because ẘ and Qm take values in the Lie algebra of (GL(d) × G0 ×

R+
0 ) n P0, their contributions to (3.23) take the form

Θ n
(H Θ p

I) (ẘ m
np − e̊ m

n Q i
m f m

ip ) , (3.26)

and thus vanish because of the section constraints. The remaining contributions from (3.22)

and (3.24) add up to reproduce the consistency requirement (3.16) on the embedding tensor,

concluding the proof that F P
MN satisfies the C-constraint (2.27).

For future reference it is convenient to write an explicit expression for F P
MN . To do

so we define the projection onto the algebra of (G0 × R+
0 ) n P0 as

t̆α̂ ≡ P(G0×R+
0 )nP0

(tα̂) (3.27)

and similarly on any other object valued in the duality algebra. Using (3.14), (3.22), (3.24)

and projecting onto (G0 × R+
0 ) n P0 we arrive at

e̊ ◦ F C
AB = X̆ C

AB +
1

2
f p
mn

(
Θ m
B Y Cn

pA − Y Cm
EBY

En
pA

)
+

−Θ m
A t̆ C

mB + αP Cm
B E t̆

E
mA −Θ m

A Q̆ C
mB + αP Cm

B EQ̆
E

mA .
(3.28)

We have already stressed that for double and exceptional field theories the C-constraint

is redundant as long as F P
MN does not contain the trombone component. Because of the

constraint (2.26) this is equivalent to asking that the R+
0 component vanishes. We can

actually make a stronger statement, namely that for these theories the embedding tensor

requirement (3.16) is redundant as long as X C
AB does not gauge R+

0 . Indeed, in (3.28) we

can see that if this is the case then X̆ C
AC = 0, which in turn implies F P

MP = 0, keeping

in mind the section constraint and the fact that Qm is H algebra valued.

The only remaining step of our proof is to show that the Bianchi identity (2.28) is

always satisfied. To do so we first rewrite it in an equivalent form. Taking (2.28) and

contracting with E M
A we notice that one of the derivative terms can be replaced by the

expression (2.29) after setting ΛM = E M
A :

E m
A ∂mF

Q
NP = LEAF

Q
NP − 2E m

[M | ∂mE
T

A F P
T |N ] − Y

PS
RNE m

S ∂mE
T

A F R
TM (3.29)

Notice that this identity holds by virtue of the C-constraint. Performing this substitution

we arrive at an equivalent expression for the Bianchi identity:

L̃EAF
P

MN = T[Θ m
M ∂m(E T

A F P
TN )] (3.30)

where T is a shorthand notation for the torsion projection defined in (2.17), so that T C
AB =

T[W C
AB ]. In (3.30) it is understood to act on the indices MNP , leaving A as a spectator.

We now use the definition of F P
MN in (3.14) and the property (3.2)15 to write the left

hand side as

L̃EAF
P

MN = E B
M E C

N E P
D

(
− δXAT

D
BC − E m

A ∂mT
D

BC

)
, (3.31)

15We stress again that (3.2) is satisfied by definition of F P
MN . What we are proving is that such F P

MN

satisfies all consistency conditions.
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where δXA is the duality algebra variation under the generator XA. We may now bring the

factors E B
M E C

N E P
D to the right hand side of (3.30) and write it as

E M
B E N

C E D
P T[Θ m

M ∂m(E T
A F P

TN )] = T
[

[WB, E ◦ FA] D
C + E m

B ∂m(E ◦ F D
AC )

]
.

(3.32)

The constraint (2.26) together with (3.24) imply that E ◦F F
AB W D

FC = 0, so that the first

term can be rewritten as −T[δ(E◦F )AW
D

BC ] = −δ(E◦F )AT
D

BC . The second term reduces

to E m
B ∂mT

D
AC and adding back the left hand side of (3.30) we arrive at

δXAT
D

BC + E m
A ∂mT

D
BC = δ(E◦F )AT

D
BC − T[E m

B ∂mT
D

AC ] . (3.33)

Noticing that X C
AB = T C

AB +E ◦ F C
AB and expanding T, this expression reduces to the

property (2.21) of the torsion T C
AB . This concludes our proof that (3.30) and hence (2.28)

are satisfied.

3.3 Patching and global extension

We now investigate how the local construction of the previous sections extends glob-

ally. First, we note that if we change our choice of coset representative, L(y)A
B →

h(y)A
CL(y)C

B for some h(y) ∈ H, the reference Vielbein and the frame transform as

e̊ m
m → e̊ n

m h̊−1m
n ,

E M
A → L−1B

A h−1C
B h̊ D

C e̊ M
D = E N

A q M
N , q M

N ∈ (G0 × R+
0 ) n P0 ,

(3.34)

where h̊ B
A is the projection of h(y) to GL(d), so that h−1C

B h̊ D
C ∈ (G0 × R+

0 ) n P0. The

transformation q N
M is then obtained by conjugation with the Vielbein.

Take now two coordinate patches Ua, Ub with coordinates labelled as yma , y
m
b respec-

tively. On their intersection Ua ∩ Ub the coset representatives are related by

Lb(yb)A
B = hab(yb)A

CLa (ya(yb)) C
B . (3.35)

Notice that we are not assuming to have a globally defined coset representative, which would

require the possibility to globally remove the H-transformations hab from the patching

above. Leaving the arguments as understood, we thus arrive at the associated patching of

the local frame

E M
bA = (L−1

a ) B
A h−1

ab
C

B h̊ab
D

C e̊a
N

D J−1 M
abN = E P

aA J−1 N
abP q−1 M

abN , (3.36)

where J M
abN is the inverse Jacobian of the change of coordinates between the patches,

embedded in the duality group as usual. We thus see that E M
A is patched together

by diffeomorphisms and transition functions q N
abM valued in (G0 × R+

0 ) n P0. Cocycle

conditions can be traced back (using (3.34) in reverse) to the cocycle conditions for the

H-valued transition functions h B
abA and are automatically satisfied.

The fact that the GL(d) part of the transition function is just the standard change of

basis induced by coordinate transformations is essential to be able to consistently patch

together the frame. However, the qab transformations can be problematic for two reasons
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and need to be analysed in detail. We will find that both the following problems can

be overcome. First, a globally defined generalised frame should be patched together by

diffeomorphisms and p-form gauge transformations. Instead, qab appears to take values

also in G0 ×R+
0 . Second, the P0 part of qab may not be exact. Namely, it may correspond

to shifts of the p-form potentials by parameters that are not the differential of a (p − 1)-

form. These issues are reflected in the patching properties of F P
MN , which will transform

by conjugation with the same transition functions as E M
A , plus an inhomogeneous term

that is essentially the torsion projection of Θ m
M ∂mqabq

−1
ab . This is a consequence of the

inhomogeneous transformation of Qm under H.

A conservative solution to the first problem is to restrict ourselves to embedding tensors

X C
AB which do not gauge any G0 × R+

0 generators, so that neither qab nor F P
MN contain

components in the global symmetries of the higher dimensional theory. The problem of

non-exactness of qab, if it arises, is solved passing to an untwisted frame by extracting a

P0-valued component from L and absorbing it in F P
MN . This is described more in detail

in appendix A. The final result is that we define

ẼA
M ≡ EAN C̃NM ,

F̃MN
P ≡ C̃−1 ◦ FMN

P + T[Θ m
M C̃−1

N
Q∂mC̃Q

P ] = Ẽ ◦ (X − T [Ẽ]) P
MN ,

(3.37)

where C̃M
N is patched by diffeomoprisms and by qab. These objects automatically satisfy

LẼAẼB
M − ẼAP ẼBQF̃PQM = −X C

AB ẼC
M (3.38)

and are patched together by Jab exclusively. This guarantees that they are globally defined

sections of appropriate untwisted generalised bundles. In other words, ẼA is a collection

of global vectors and p-forms (and possibly p-form densities) encoding the background

internal metric, warp factor, and scalar fields, while F̃ encodes background fluxes and

massive deformations. Because it satisfies the Bianchi identity, we can extract the p-form

fluxes from F̃ P
MN identifying a locally defined ĈM

N ∈ P0 that encodes the associated p-

form potentials and that is patched together by p-form gauge transformations exclusively,16

so that

ÊA
M ≡ ẼAN ĈNM , F̂ 0 P

MN ≡ Ĉ−1 ◦ F̃ P
MN + T[Θ m

M Ĉ−1
N
Q∂mC̃Q

P ] , (3.39)

and ÊA, F̂ 0 define a global solution of (3.1). Now ÊA is a global frame for the (twisted)

generalised tangent bundle and F̂ 0 only encodes massive deformations of the uplift theory,

if any are necessary. We also anticipate that F̂ 0 can inform us on whether our uplift can

be extended by extra flat directions, as we will discuss in the next section.

Making a few reasonable assumptions on the properties of the supergravities and gener-

alised geometries under consideration, we can extend the discussion of the paragraph above

to a wider class of uplifts. First, we will assume that only a single copy of the (standard)

tangent bundle is embedded into the generalised tangent bundle. In other words, given a

generalised vector VM only its components VMΘ m
M transform as a vector under GL(d).

16Namely, by some q̂ab ∈ P0 whose associated (local) Weitzenböck connection has vanishing torsion.
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This also means that an object BM transforms as a one-form only if BM = Θ m
M Bm.

Second, we point out that in most supergravity theories only the scalar currents and their

dual D + d − 2 forms transform in the adjoint of the global symmetry group G0 × R+
0 .

This implies that the representation content of F P
MN can only allow for terms valued

in G0 × R+
0 that are either GL(d) singlets, corresponding to an embedding tensor in the

higher dimensional theory, or GL(d) one-forms corresponding to fluxes induced by global

symmetry twists. Both these assumptions apply for instance to maximal supergravities

and to the associated exceptional generalised geometries. Finally, we are going to focus on

uplifts to supergravities that are not themselves gauged. This allows us to discuss global

definiteness without the need to worry about gauge-group valued transition functions. In

principle, this is a requirement that we could lift.

To avoid the uplift theory to be itself a gauged supergravity we just need to exclude

components of X C
AB that are valued in the Lie algebra of G0×R+

0 and are GL(d) singlets.

As a result any G0 × R+
0 valued components of F P

MN must be the torsion projection of

a one-form Θ m
M B P

mN . A close look at (3.28) shows that any such contributions coming

from t̆m cancel out with X̆ C
AB .17 Moreover, the H-valued part of X̆ C

AB cannot contribute

because it would not correspond to a GL(d) one-form. This implies that actually, under

our current assumptions

H ⊂ GL(d) n P0 . (3.40)

Thus we conclude that F P
MN does not contain any components valued in the Lie algebra

of G0 × R+
0 and that qab ∈ P0, which brings us back to the procedure described above to

construct a globally defined frame. Of course, if some of our assumptions are not satisfied

for more exotic generalised geometries we can always impose (3.40) directly.

We should stress that the conditions for global definiteness discussed above are only

required if we want our frame to be global in the sense of standard generalised geometries,

where transition functions for the generalised tangent bundle are not valued in G0 × R+
0 .

We may however be willing to relax this requirement. For instance, it appears perfectly

acceptable to have G0 ×R+
0 valued transition functions if the higher dimensional theory is

itself gauged. This is taken into account by our construction in presence of GL(d) singlet

components gauging G0 ×R+
0 in XA, which become directly part of F̂ 0 and determine the

higher dimensional gauging. Even if we were to allow for arbitrary twists taking values

in the global symmetry group of the higher dimensional theory, the resulting geometries

would appear less pathological than general U-folds, in which the patching is performed

by duality transformations that are not global symmetries.

3.4 Central charges and extended internal space

Our final objective is to lift the assumption made below (3.4), where we restricted the

vector components of the frame to be of the form Θ a
A Ka. In doing so we will be able

to capture the most general instance of generalised Leibniz parallelisable spaces and the

associated generalised frames.

17The term αP Qm
P R t̆

R
mM is valued in P0.
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It is instructive to first consider an intermediate step, namely an easy extension of the

situation described so far, in which the generalised flux constraints (2.26), (2.27) and (2.28)

are satisfied by F̂ 0 on a space larger than H\G. To check if this is the case we introduce

an extended section matrix

E m̂
M ≡ (Θ m

M , E m0
M ) , m0 = d+ 1, . . . , d+ n . (3.41)

and require that it solves the section constraint (2.10a) as well as all the generalised flux

constraints (2.26), (2.27) and (2.28) with F̂ 0
MN

P in place of F P
MN . Notice that this is now

a requirement on E m0
M . If we find such a non-vanishing extension of the section matrix,

then the internal space is extended to

H\G× Tn , (3.42)

possibly with some warping of the Tn factor over the coset space. This does not require a

modification of the frame and fluxes, which therefore do not depend on the torus (angle)

coordinates. It is also worth noticing that there can be more than one such extension.

For instance, uplifts of maximal gauged supergravities on coset spaces of low dimension

might be extendable to both type IIB or eleven dimensional supergravity depending on a

choice of E m0
M .

Let us now complete our analysis and consider the most general situation that can arise

from (3.4), in which other vectors KA, not proportional to Θ a
A Ka, are allowed to be non-

vanishing. In this case (3.4) tells us that the KA define a centrally extended version of the G

algebra. The situation described in the paragraph above is a special case, where all the non-

vanishing vectors independent from Ka sit in the right kernel of hab
a0 , thus determining an

extension of G by direct product with U(1) factors. We will denote the centrally extended

gauge group Gext (direct product or not), which is not a subgroup of G × R+, and refer

to the central extension as Z, so that G = Gext/Z. As in section 3.1, we notice that Gext

acts transitively on the internal space, which is thus a coset space Hext\Gext. Because the

central charges commute with everything else, we can locally reduce this coset space to

Hext\Gext ' H\G× Tn , (3.43)

where Tn denotes the coset space directions associated with central charges and H =

Hext/(Hext ∩ Z). Globally, the torus fibration over H\G can be non-trivial.

We may now define an extended embedding tensor Θ̂A
â, where â = (a, a0) runs along

a basis for the right kernel of X C
(AB) , so that the following requirements are satisfied:

X C
(AB) Θ̂C

â = 0 , Θ̂A
a = ΘA

a , Θ̂A
a0 ⊥ ΘA

a ∀a0 6= a , (3.44)

and so that we can write the most general KA satisfying (3.4) as

KA = Θ̂A
âKâ , (3.45)

with Kâ being the Killing vectors on the coset space. In other words, Θ̂A
â defines the

embedding of the adjoint of Gext into the Rv indices and is Gext invariant. We can now
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repeat the same argument used in section 3.1 to arrive at (3.13) and (3.14), with (3.43)

instead of H\G and Θ̂ instead of Θ. In particular, we need to require that the projection

Θ̂A
m̂ of the extended embedding tensor onto a set of coset generators tm̂ satisfies the

section constraint

Y AB
CDΘ̂A

m̂Θ̂B
n̂ = 0 . (3.46)

The extra linear constraint (3.16) must also be amended by substituting ΘB
m → Θ̂B

m̂. An

important observation is that Z is trivially represented in the Rv representation, so that

L B
A will still be a coset representative of H\G, in particular L B

A ∈ G ⊂ G ×R+. Instead,

the reference Vielbein e̊m̂
m̂ might be non-trivial along the torus directions, depending on

whether the Cartan-Maurer equations dΩ + Ω∧Ω = 0, projected onto the generators of Tn

translations, imply that the associated one-form is locally exact or not. If it is, we may use

the expressions developed for the H\G truncation and treat the torus extension as at the

beginning of this section. If it is not, we must take into account that now e̊ ∈ GL(d+n) and

that (G0 × R+
0 ) n P0 are the global symmetries and p-form transformations of the theory

living on the d + n dimensional internal space. The resulting E M
A and F P

MN will differ

from those we would have obtained by uplifting on H\G exclusively.18 In any case, under

an Hext transformation both L B
A and e̊ M

A will only transform with H, which is now a

subgroup of (GL(d+ n)× G0 × R+
0 ) n P0.

At this point, the proofs in section 3.2 must be repeated. All the steps turn out to be

exactly the same if we simply make the substitutions

d→ d+ n , Θ a
A → Θ̂ â

A , f c
ab → δaâδ

b
b̂
(f c
ab δ

ĉ
c + h c0

ab δĉc0) . (3.47)

As regards the global patching discussed in section 3.3, the transition functions qab are still

induced by H transformations because Hext∩Z acts trivially on both the coset representative

and the reference Vielbein. Except for the dimensionality of the internal space which is

enlarged to d + n, and the substitution Θ → Θ̂ there are no differences in the analysis.

The untwisted and the twisted generalised frame and fluxes are constructed using the

same procedure.

This completes our constructive proof that the most general generalised Leibiniz par-

allelisable space is of the form (3.43) with Gext the central extension of the gauge group G

determined from X C
AB itself.

4 Examples

4.1 Group manifold reductions

Our procedure includes group manifold reductions as a special case. Suppose G = G′ n H

with G′ ⊂ GL(d). In this case the reference Vielbein e̊ m
m is the right invariant Vielbein on

G′ and (3.13) reduces to the (inverse of the) left invariant Vielbein on G′, embedded into

the duality group. Thus, (3.13) becomes the standard Scherk-Schwarz reduction Ansatz

on group manifolds written in the language of ExFT/EGG. It is guaranteed to generate

18An uplift on H\G is always guaranteed, as we can enlarge Hext to include the whole Z, and the section

constraint as well as (3.16) will be automatically satisfied by the resulting Θ m
A if they were for Θ̂ m̂

A .

– 21 –



J
H
E
P
1
2
(
2
0
1
7
)
1
2
4

upon truncation a gauged supergravity with constant embedding tensor X0 C
AB . If X0 C

AB 6=
X C
AB , the difference is entirely generated by background fluxes, massive deformations or

gaugings of the higher dimensional theory reduced on G′. This last statement is non-trivial

and is a consequence of the general proof of consistency of section 3.2.

4.2 Consistent Pauli reductions

The consistent Pauli reductions on group manifolds G′ discussed in [64] are consistent

truncations of double field theory that map the complete set of isometries G = G′left×G′right

of a group manifold G′ into the gauge group of the reduced theory. In this setting the

duality group is G = O(d, d) with invariant metric ηAB, d being the dimension of the group

manifold and A, B, . . . being O(d, d) vector indices. The duality group admits subgroups

SO(p, q) × SO(p, q) with p + q = d so that A = (i, i), each set of indices being the vector

irrep of one SO(p, q) factor. The structure tensor is Y AB
CD = ηABηCD and the general

solutions of the section constraint span a subspace of the vector representation that is null

with respect to ηAB. The embedding tensor is a set of structure constants f C
AB with

only nonvanishing components f k
ij = f k

ij corresponding to two copies of the G′ structure

constants. The Pauli reduction on G′ is based on the equivalent coset space

G′ '
G′left ×G′right

G′diag

. (4.1)

We can indeed take H = G′diag which is automatically embedded in the GL(d) subgroup

of SO(d, d). The coset generators are then taken to be the anti-diagonal combination of

left and right generators, which transform in the adjoint of H. Projecting f C
AB onto the

anti-diagonal combinations we obtain a set of null vectors f m
A that satisfy the section

constraint. No G0 × R+
0 components are present and hence we obtain a global Leibniz

parallelisation.

4.3 ω-deformed SO(p, q) gaugings and a no-go result

Let us now focus on certain classes of gaugings of four-dimensional maximal supergravity

described in [49, 52, 54]. They include as special cases the original SO(8) gauging of de Wit

and Nicolai [14, 15] and the non-compact SO(p, q) and contracted CSO(p, q, r) gaugings

of [70, 71] (see [46] for a treatment based on the embedding tensor and [48] for a review of

the whole subject).

The discussion of the latter gaugings also applies to the similar families that exist in

other dimensions. The four dimensional case is however richer because of the presence

of symplectic deformations [49, 54] which allow for inequivalent choices of the embedding

tensor sharing the same gauge group, but giving rise to different physics.19

We start from the gauged maximal supergravities with G = SO(8) [14, 15, 49]. The

only possible coset space with dimension low enough to satisfy the section constraint is

SO(7)\SO(8). There are three inequivalent subgroups SO(7)v,s,c depending on which of

19It would certainly be interesting to perform a similar analysis for the symplectic deformations of the

half-maximal gauged supergravities discussed in [72], making use of SL(2)-DFT [67].
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the three irreps 8v, 8s, 8c decomposes into 7 + 1. We also know that for the section

constraint (3.9) to be satisfied the embedding of SO(7) into E7(7) × R+ must go through

the chain

SO(7) ⊂ GL(7) ⊂ E7(7) × R+ . (4.2)

This rules out one of the three choices, say SO(7)s, because it goes through an embedding

in SU(7) rather than GL(7).20 The other two choices satisfy the embedding chain. In fact,

SO(7)v and SO(7)c are mapped into each other by an E7(7) transformation that normalises

SO(8) [52, 54].

All inequivalent embedding tensors for SO(8) are parameterised by an angle ω ∈
[0, π/8] [49]. Other values of ω are equivalent to those in the specified range. Work-

ing in the standard SL(8) symplectic frame (see e.g. [46]), the original SO(8) gauging of

de Wit and Nicolai is obtained for ω = 0 mod π/4. It is described by a purely electric

embedding tensor Θ α
Λ where Λ = 1, . . . , 28 only runs along the ‘electric’ half of the 56

irrep of E7(7). All other gaugings are obtained by turning on a magnetic component pro-

portional to the electric one, the relative coefficients being specified by ω. We can write

the electric embedding tensor replacing the adjoint index α with the adjoint of SO(8) and

using double index notation (each couple corresponds to one of the two indices of Θ):

Θ α
Λ ∼ δ [C

[A δ D]
B] , A, B, C, D = 1, . . . , 8 . (4.3)

The SO(8) generators are also written as t[AB]. Let us say that A is an index in the 8v irrep.

The coset space SO(7)v\SO(8) = S7 is generated by t[A8]. The expression corresponding

to Θ m
A becomes

Θ m
A ∼ δ [m

[A δ 8]
B] , m = 1, . . . , 7 , (4.4)

which indeed solves the section constraint and reproduces eleven-dimensional supergrav-

ity [32]. Because H ⊂ GL(7) exclusively, there are no issues with the global extension of

the generalised frame. Actually, the frame E M
A matches the untwisted frame Ẽ M

A and

F P
MN = F̃ P

MN encodes the Freund-Rubin flux.

We can also pick the coset space SO(7)c\SO(8) = S7, but the electric embedding tensor

above will not solve the section constraint once we project onto the new coset generators.

Because SO(7)c ' SO(7)v by E7(7) conjugation, we can conjugate the embedding tensor by

the same transformation exchanging the two SO(7) groups [54]. The resulting embedding

tensor corresponds to ω = π/4 and does solve the section constraint when projected onto

the generators of SO(7)c\SO(8) = S7. More importantly, these are the only combinations

of isotropy group and ω deformation that satisfy the uplift conditions.

This analysis of the SO(8) case may appear redundant, because we knew from the start

that the ω = π/4 theory is equivalent to the standard one, and hence equally liftable to

11d supergravity. It has also been shown that the other inequivalent SO(8) gaugings (ω ∈
(0, π/8]) do not admit a geometric uplift to 11d supergravity [50, 51]. The information we

have just collected is however crucial for the non-compact cousins of the SO(8)ω gaugings,

where the no-go theorem of [51] does not apply.

20We are picking conventions in which the fermions transform in the 8s and 56s representations of SO(8).
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Let us first look at SO(4, 4)ω, which are especially interesting because of their family

of de Sitter extremal points that can satisfy arbitrary slow-roll conditions by tuning the

value of ω [53]. These gaugings have a structure very similar to SO(8) and actually all the

discussion above applies directly. In particular, the SO(4, 4)π/4 gauging is equivalent to

SO(4, 4)0 [54] and there are two subgroups SO(4, 3)v,c analogous to SO(7)v,c and related

by an E7(7) transformation [52, 54]. We do not find an uplift for any other value of ω.

For other signatures the story diverges in some small but relevant ways. The value

ω = π/4 is inequivalent to ω = 0 for SO(7, 1), SO(6, 2) ' SO∗(8) and SO(5, 3). All these

theories have vacua of some kind when setting ω = π/4 [52], as well as other solutions,

some even supersymmetric, for varying values of ω [73–75]. In particular, SO(6, 2)π/4
is the starting point to construct a large family of theories exhibiting Minkowski vacua

with varying amounts of residual supersymmetry [52, 76]. All these gauge groups have

subgroups analogous to SO(7)v and SO(4, 3)v which allow to uplift the ω = 0 variants as

done in [2, 3]. To uplift the ω = π/4 theories, though, we would need a subgroup analogous

to SO(7)c ⊂ SO(8), e.g. an SO(6, 1) or SO(5, 2) subgroup of SO(6, 2) such that the spinorial

8c branches to 7+1. Unfortunately, these real forms do not admit such subgroups and the

outer (triality) automorphism mapping vector and spinorial irreps is broken by the choice

of real section. Other values of ω are excluded by the section constraint as usual.

We now combine these results with two observations. First, the SO(p, q) algebras are

simple and thus do not admit central extension and have faithful adjoint representation.

Second, their embedding in E7(7) is such that no element of the irrep Rv = 56 is invariant.

The consequence of these observations is that any frame ÊA must have vector components

Ê M
A E m

M = Θ a
A K m

a with K m
a satisfying the SO(p, q) algebra. Referring back to our

discussion in section 3.1, this means that the procedure we have just followed to look for

uplifts is exhaustive. The results of the previous paragraph therefore imply the following

no-go result

The only SO(8)ω and SO(p, q)ω gaugings admitting a (locally or globally) geo-

metric uplift are the undeformed ones (ω = 0 or equivalent).

The first part of our proof is analogous to [51], but then we do not need to rely on the

existence of an invariant generalised metric or of a maximally (super)symmetric vacuum

solution, which were restricting the no-go result stated there to the compact case SO(8)ω.

4.4 CSO(p, q, r) gaugings revisited

Let us now move to the gaugings of ISO(7) = CSO(7, 0, 1) = SO(7) nR7.21 There are two

such gaugings [54]. The first one is entirely electric, has no vacua and uplifts to massless

type IIA supergravity on S6 [4–6]. The second one has an embedding tensor equal to the

first, plus an extra magnetic contribution by a term which reproduces exactly the Romans

mass deformation F̂ 0 of the generalised Lie derivative for massive IIA supergravity [41].

Put in these terms, it will not come as a surprise that such gauging lifts to massive IIA on

21It is entirely trivial to change the signature to ISO(p, q) and we will not discuss this further.
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a six-sphere [4–6].22 In the approach of this paper, the six-sphere uplifts just mentioned

are obtained from the coset space

ISO(7)

ISO(6)× R
=

SO(7)

SO(6)
= S6 . (4.5)

For the electric ISO(7) gauging we could actually pick ISO(7)
ISO(6) as seven-dimensional internal

space and the extra flat direction would correspond to a standard Kaluza-Klein compact-

ification from eleven-dimensional supergravity to massless type IIA. The final expression

for Ê wold not differ from (4.5) and the extra flat direction is recovered from (4.5) as an

S1 extension allowed by the vanishing of F̂ 0 (again, only for the electric gauging). Similar

ambiguities will apply to the choice of internal space for the other CSO(p, q, r) gaugings

discussed below and we choose to always display the most economical coset space.

Because the Romans mass deformation only affects the gauge connection of the R7

generators modded out in (4.5), it does not affect the construction of E M
A in any way, but

rather passes trough the entire uplift procedure and becomes the F̂ 0 deformation of the

EGG Lie derivative as anticipated. This is entirely consistent with the analysis of [6].

For the electric ISO(7) gauging there is another choice of coset space. This time we

pick H = SO(7) ⊂ GL(7) and keep the seven translations, so that the internal space is

diffeomorphic to R7 and the uplift is to eleven-dimensional supergravity. All consistency

conditions are satisfied, including global definiteness on R7. It is also straightforward to find

out that F P
MN = 0, so that there are no background p-form fluxes or other deformations.

The generators of R7 are embedded into a subalgebra of e7(7) which is the transpose of

p0. In the language of [77], this means that the background under consideration is a

realisation of ISO(7) in terms of a ‘locally geometric flux’. The nomenclature refers to

the fact that upon compactification on T7 the supergravity fields will jump along cycles

by U-duality transformations. The fact that ISO(7) can be recovered both as a sphere

reduction and as a locally geometric flux on a torus exemplifies once more the known fact

that the interpretation of embedding tensor components as geometric or non-geometric is

devoid of meaning until we fix our choice of uplift Ansatz. If we do not compactify to T7

the metric and C3 field blow up at infinity. This is an immediate consequence of the linear

dependence of E M
A on the Cartesian coordinates of R7.

We can repeat the analysis of ISO(7) for the other CSO(p, q, r) groups. For each one

of them we find the uplift manifolds of [2] and an uplift on flat internal space with some

‘locally geometric flux’ analogous to the one found for ISO(7).23 Moreover, the CSO(3, 0, 5)

gauging can not only be uplifted on S2×T5 as done in [2], and to flat space as just specified.

It can also be uplifted to an S3 group manifold in the standard Scherk-Schwarz fashion. In

total, counting only the most economical coset spaces as discussed for ISO(7), this gauging

22Chronologically, however, the uplift [4–6] came before an XFT/EGG for massive type IIA was formu-

lated [41, 42] and used complementary techniques analogous to those of the S7 consistent truncation [13].
23This becomes the standard NSNS Q-flux of ten-dimensional supergravities for CSO(2, 0, 6) and

CSO(1, 1, 6).
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admits three inequivalent uplift manifolds24

CSO(3, 0, 5)

CSO(2, 0, 5)× R5
= S2 ;

CSO(3, 0, 5)

CSO(3, 0, 4)
= R3 ;

CSO(3, 0, 5)

R15
' S3 . (4.6)

The non-compact version also works similarly.

For all coset spaces described above Θ m
A is a submatrix of (4.4) and therefore solves the

section constraint. The only exceptions are the S3 group manifold reduction in (4.6) and its

non-compact version, where Θ m
A ∼ δ

np

ABε
npm. This also satisfies the section constraint.25

In all the cases with r ≥ 2, the generalised flux constraints allow to extend the internal

space with extra flat directions to reach uplifts to both type IIB and eleven dimensional

supergravity.

All coset spaces in this section can be reduced to have H ⊂ GL(d). This implies

that E M
A is the untwisted frame of the reduction and that a global extension is ensured.

Excluding the cases with generalised Q-flux and the group manifold, the other uplifts will

include a d-form flux embedded into F P
MN . This is entirely analogous to the expressions

already known in the literature and we do not discuss it further.

The ‘dyonic’ CSO gaugings of [52] can be also uplifted following our procedure. These

are superpositions of two CSO(p, q, r) groups taking the form

(SO(p, q)× SO(p′, q′)) nN (4.7)

with N generated by a nilpotent algebra. The story is entirely similar to the discussion

above, except that the coset space will decompose into two pieces, corresponding to the

electric and magnetic parts of the gauging. This is consistent with the uplift expressions

developed in [7]. Beyond the uplifts described there, it is straightforward to deduce from

the section constraint that semisimple SO(3) and SO(2, 1) factors can also be uplifted as

group manifolds, and that uplifts of either CSO copy based on locally geometric fluxes are

only allowed when p+ q + p′ + q′ < 8.26

5 Comments

We have identified a general procedure to uplift gauged supergravities in terms of gener-

alised Leibniz parallelisations for the associated ExFT. Consistency requires that we find

a subgroup H of the gauge group G such that the projection Θ m
A of the embedding tensor

on a set of H\G coset generators tm satisfies the section constraint (3.9), and if necessary

the extra linear constraint (3.16). If central extensions are present, the same constraints

apply to the extended embedding tensor Θ̂ m̂
A described in section 3.4.

There is in principle an alternative way to check whether a certain gauged supergravity

admits an uplift based on our construction. This is worth mentioning as it exemplifies the

24For the distinction between S3 and S3/Z2 see the comments section.
25There are actually some sign flips in Θ m

A when dealing with the non-compact versions, which we have

been ignoring in our exposition.
26Notice that we can also make choices for H such as H = (SO(p, q− 1)× SO(p′, q′))nN so that we only

uplift one of the two CSO copies while the other becomes a gauging for the higher-dimensional theory.
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difficulty in generating a generalised Leibniz parallelisation with embedding tensor X C
AB if

we choose a solution of the section constraint E m
M which is not tailored to the embedding

tensor. Let us first choose the target higher-dimensional theory and an associated solution

of the section constraint E m
M . Then we can define a projector ΠM

N onto the d dimensional

vector space defined by E m
M . A certain embedding tensor admits an uplift following our

procedure if the projected gauge generators xA ≡ (1 − Π) B
A XB form a Lie subalgebra

of the gauge algebra. Namely, xA must satisfy the quadratic constraint (2.3) and define

H. The linear constraint (3.16) must also be imposed. The disadvantage of this approach

is that Π B
A is not unique nor covariant under G × R+ and the procedure above must be

repeated for the whole G × R+ orbit of X C
AB and for each choice of Π B

A (although the

orthogonal projector is likely to be the correct guess, as it is in all our examples). Letting

the embedding tensor induce by itself the correct choice of solution of the section constraint

as done in the main text is an important technical simplification which is made possible

by the ExFT formalism.

It is natural to ask under what conditions the generalised parallelisations described here

are well-defined once we quotient the internal space by some group of discrete isometries.

Because in (3.13) we use the coset representative written in the Rv representation of G,

it is clear that the natural global versions of G and H to be considered are the ones

faithfully represented in Rv. We have implicitly used this argument to describe the central

extensions in section 3.4 as Tn rather than Rn. Another simple example is the uplift on

S7 = SO(7)\SO(8). In this case our procedure really identifies SO(7)\PSO(8) = RP7 =

S7/Z2 as the internal space, because the Z2 center of SO(8) is trivially represented on

Rv
SO(8)→ 28 + 28. Thus the generalised frame is automatically well-defined on RP7, which

is consistent with the counting of supersymmetries in [78] and with the supersymmetry

enhancement of the ABJM model at level k = 2 [79]. Of course the extension to the double

cover S7 is straightforward. Notice that the same discussion applies to the GL+(d + 1)

generalised parallelisation of any odd-dimensional sphere and its Z2 quotient RPd. These

observations are already useful to identify some allowed global forms of the internal spaces.

Whether extra quotients can be allowed would be an interesting question to investigate. It

would require the presence of a group of freely acting discrete isometries commuting with

the transitive action of Gext, as happens for instance on group manifolds. While we do not

rule out entirely that some extra quotients exist for genuine coset spaces, the expectation is

that actions by transformations non-trivially represented in Rv will require G ×R+ valued

transition functions and thus define at best U-fold like geometries.

We have left out of our discussion the D = 3 E8(8) ExFT [33, 35]. In three dimen-

sions dual graviton contributions enter prominently in the algebra of generalised diffeomor-

phisms, which does not close [29] unless extra covariantly constrained gauge parameters

are introduced [33].27 Generalised Scherk-Schwarz reductions for E8(8) ExFT have not

been extensively discussed in the literature yet. Recent progress has been made in [82]

27These extra parameters can be truncated by introducing a preferred connection in the generalised

Lie derivative [80, 81], although this connection does not match with the one appearing naturally in the

supersymmetrisation [35].
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by constructing an half-maximal O(d + 1, d + 1) ExFT in three dimensions conceptually

analogous to the four-dimensional SL(2)-DFT recently developed in [67]. It appears likely

that an approach similar to the one followed in this paper will work for the construction of

generalised Scherk-Schwarz reductions of three-dimensional ExFTs. A natural first step in

this direction is the construction of the most general flux deformations of the generalised

Lie derivative in D = 3.

We have briefly explained how our recipe reproduces the known uplifts of many gauged

supergravities, provides a few alternative uplifts for some, and excludes a geometric origin

for others. The natural next step is to exploit this formalism to generate new uplifts of

gauged supergravities and use them to construct new interesting solutions of string- and

M-theory. It would be particularly interesting to investigate whether there exist any gen-

eralised Leibniz parallelisable spaces belonging to the larger class presented in section 3.4,

with non-trivial fibration over H\G. We hope to come back to these questions in the

near future.
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A Coset representative decomposition

Any element of G × R+ can be decomposed in terms of a compact transformation U ∈ H
and elements of (GL(d) × G0 × R+

0 ) n P0. This is so because the supergravity degrees

of freedom parameterising G/H all descend from the internal metric, scalar fields of the

higher dimensional theory (e.g. dilaton or axio-dilaton) and p-forms. Because the coset

representative of H\G is embedded in G × R+, we can apply the same decomposition:

[L−1] N
M = [U GS P ] N

M , (A.1)

where G ∈ GL(d), S ∈ G0×R+
0 and P ∈ P0. The components G and S can be modified by

O(d) and H0 transformations that can be reabsorbed into U , but we will not make direct

use of this fact. P is unambiguously identified.

A similar decomposition applies to H transformations, where a H element is not re-

quired

[h−1]M
N = [̊h−1 s p]M

N (A.2)

where h̊ ∈ GL(d), s ∈ G0 × R+
0 and p ∈ P0. On an overlap between two patches, L

transforms by such an H transformation. Substituting (A.2) into (A.1) we can deduce the
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transition functions for each factor

Ub = Ua (Gåh
−1
ab G

−1
b )(SasabS

−1
b ) ,

Gb = (Gåh
−1
ab G

−1
b )−1Gåh

−1
ab ,

Sb = (SasabS
−1
b )−1Sasab ,

Pb = Pa(P
−1
a h̊abs

−1
ab Pasab̊h

−1
ab pab) .

(A.3)

In section 3.3 we have described conditions under which sab is trivial. In such situation

we may define

L̃−1 ≡ L−1P−1 , (A.4)

which is patched together by h̊−1
ab exclusively. The transition functions qab become the

conjugation by e̊ of the transition function for P . Equivalently, defining C̃ ≡ e̊P−1e̊−1 we

arrive at the untwisted frame

Ẽ ≡ L̃−1e̊−1 = EC̃ . (A.5)

The local twist C̃ is patched with the same qab transistion functions that appear in E so

that they cancel out in the product and Ẽ is patched together by internal diffeomorphisms

exclusively, consistently with the patching deduced from (2.23). If sab is non-trivial, the

above definitions are still valid but Ẽ and F̃ will be patched together with extra G0 × R+
0

transformations.
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[63] P. du Bosque, F. Hassler and D. Lüst, Generalized Parallelizable Spaces from Exceptional

Field Theory, arXiv:1705.09304 [INSPIRE].

[64] A. Baguet, C.N. Pope and H. Samtleben, Consistent Pauli reduction on group manifolds,

Phys. Lett. B 752 (2016) 278 [arXiv:1510.08926] [INSPIRE].
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