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We prove an old conjecture by Duff, Nilsson, Pope and Warner asserting that the NS–NS sector of 
supergravity (and more general the bosonic string) allows for a consistent Pauli reduction on any 
d-dimensional group manifold G , keeping the full set of gauge bosons of the G × G isometry group 
of the bi-invariant metric on G . The main tool of the construction is a particular generalised Scherk–
Schwarz reduction ansatz in double field theory which we explicitly construct in terms of the group’s 
Killing vectors. Examples include the consistent reduction from ten dimensions on S3 × S3 and on similar 
product spaces. The construction is another example of globally geometric non-toroidal compactifications 
inducing non-geometric fluxes.
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1. Introduction

Although the idea of Kaluza–Klein theories originated in the 
1920s [1,2], it was with the advent of higher-dimensional super-
gravities and string theory that the need for developing schemes 
for obtaining lower-dimensional theories by means of dimensional 
reduction became compelling. The original idea of Kaluza [1], sub-
sequently developed by Klein [2], was straightforwardly extended 
from a circle reduction to a reduction on a d-dimensional torus. 
By this means, for example, four-dimensional ungauged N = 8
supergravity was constructed, by reducing eleven-dimensional su-
pergravity on a 7-torus [3,4]. A key feature in this, and most 
other, dimensional reductions is that one truncates the infinite 
“Kaluza Klein towers” of lower-dimensional fields that result from 
the generalised Fourier expansions of the higher-dimensional fields 
to just a finite subset, typically, but not always, just the massless 
fields.

Since the reduction is being applied to a highly non-linear the-
ory, the question then arises as to whether the truncation to a 
finite subset of the fields is a consistent one. One way to formu-
late the question is whether in the full lower-dimensional theory, 
prior to the truncation, the equations of motion of the fields to 
be truncated are satisfied when one sets these fields to zero. The 
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potential danger is that non-linear products of the fields that are 
being retained might act as sources for the fields that are to be 
truncated.

In the case of a circle or toroidal reduction, the consistency 
of the truncation is guaranteed by a simple group-theoretic argu-
ment. The fields that are retained are all the singlets under the 
U (1)d isometry of the d-torus, while all the fields that are set to 
zero are non-singlets (i.e. they are charged under the U (1) factors). 
It is evident, by charge conservation, that no powers of neutral 
fields can act as sources for charged fields, and so the consistency 
is guaranteed.

A more general class of dimensional reductions was de-
scribed by DeWitt in 1963 [5]. In these, one takes the internal 
d-dimensional space to be a compact group manifold G , equipped 
with its bi-invariant metric. The isometry group of this metric is 
G L × G R , where G L denotes the left action of the group G and 
G R denotes the right action. If all the towers of lower-dimensional 
fields were retained in a reduction on the group manifold G , then 
the massless sector would include the Yang–Mills gauge bosons of 
the isometry group, G L × G R . However, in the DeWitt reduction 
only the gauge bosons of G R (or, equivalently and alternatively, 
G L ) are retained. To be precise, the lower-dimensional fields that 
are retained in the truncation are all those that are singlets un-
der G L . There is now again a simple group-theoretic argument that 
demonstrates the consistency of the DeWitt reduction: The fields 
that are being truncated are all those that are non-singlets un-
der G L . It is evident that no non-linear powers of the G L -singlets 
that are retained can act as sources for the fields that are being 
set to zero, and so the truncation must be consistent.
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

https://core.ac.uk/display/82141938?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.physletb.2015.11.062
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:pope@physics.tamu.edu
http://dx.doi.org/10.1016/j.physletb.2015.11.062
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2015.11.062&domain=pdf


A. Baguet et al. / Physics Letters B 752 (2016) 278–284 279
A much more subtle situation arises if one tries to make more 
general kinds of dimensional reduction that are not of the toroidal 
or DeWitt type. One of the earliest, and most important, exam-
ples is the 7-sphere reduction of eleven-dimensional supergravity. 
The massless sector of the reduced four-dimensional theory con-
tains the fields of maximal N = 8 gauged SO(8) supergravity [6,
7], but there is no obvious reason why it should be consistent to 
set the massive towers of fields to zero. In particular, one can eas-
ily see that if a generic theory is reduced on S7 (or indeed any 
other sphere), then a quadratic product formed from the SO(8)

gauge bosons will act as a source for certain massive spin-2 fields. 
This sets off a chain reaction that then requires an infinity of four-
dimensional fields to be retained. A first indication that something 
remarkable might be occurring in the case of eleven-dimensional 
supergravity and the S7 reduction was found in [8], where it 
was shown that a conspiracy between contributions in the re-
duction ansatz for the eleven-dimensional metric and the 4-form 
field strength resulted in an exact cancellation of the potentially-
troublesome source term for the massive spin-2 fields that was 
mentioned above. Subsequent work by de Wit and Nicolai in the 
1980s [9], with more recent refinements [10–12], has established 
that the truncation to the massless N = 8 gauged SO(8) super-
gravity is indeed consistent. There are a few other examples of 
supergravity sphere reductions that also admit analogous remark-
able consistent truncations.

Dimensional reductions on a d-dimensional internal manifold 
Md with isometry group G that admit a consistent truncation to a 
finite set of fields that includes all the gauge bosons of the Yang–
Mills group G were called Pauli reductions in [13]. (The idea of 
such reductions was first proposed, but not successfully imple-
mented, by Pauli in 1953 [14–16].) It was also observed in [13]
that in addition to the necessary condition for consistency that 
was first seen in [8], which was essentially the absence of a cubic 
coupling of two gauge bosons to the massive spin-2 modes in the 
untruncated lower-dimensional theory, a rather different necessary 
condition of group-theoretic origin could also be given. Namely, 
one can consider first the (trivially consistent) truncation of the 
theory when reduced instead on the torus T d . The resulting lower-
dimensional theory will have a (non-compact) group S of global 
symmetries, with a maximal compact subgroup K . If the higher-
dimensional theory were to admit a consistent Pauli reduction on 
the manifold Md then it must be possible to obtain that theory, 
with its Yang–Mills gauge group G , by gauging the theory obtained 
instead in the T d reduction. (Conversely, by scaling the size of the 
Md reduction manifold to infinity, the gauged theory should limit 
to the ungauged one.) This will only be possible if the isometry 
group G of the manifold Md is a subgroup of the maximal compact 
subgroup K of the global symmetry group S of the T d reduction.

A generic theory will not satisfy the above necessary condition 
for admitting a consistent Pauli reduction. For example, pure Ein-
stein gravity in (n + d) dimensions gives rise, after reduction on 
T d , to an n-dimensional theory with S = GL(d, R) global symmetry, 
whose maximal compact subgroup is K = SO(d). By contrast, the 
isometry group of the d-sphere is G = SO(d + 1), which is thus not 
contained within K . The situation is very different if we consider 
certain supergravity theories, such as eleven-dimensional super-
gravity. If it is reduced on T 7 the resulting four-dimensional un-
gauged theory has an enhanced E7(7) global symmetry, for which 
the maximal compact subgroup is K = SU(8). This is large enough 
to contain the G = SO(8) isometry group of the 7-sphere, and thus 
this necessary condition for consistency of the truncation in the S7

reduction is satisfied.
It is evident from the above discussion that if an (n + d)-

dimensional theory is to admit a consistent Pauli reduction on Sd , 
in which all the Yang–Mills gauge bosons of the isometry group 
SO(d +1) are retained, then the theory must have some special fea-
tures that lead to its T d reduction yielding a massless truncation 
with some appropriate enhancement of the generic GL(d, R) global 
symmetry group. Similarly, one may be able to rule out other pu-
tative consistent Pauli reductions by analogous arguments.

This brings us to the topic of the present paper. It was observed 
in [17] that in a reduction of the (n +d)-dimensional bosonic string 
on a group manifold G of dimension d, the potentially danger-
ous trilinear coupling of a massive spin-2 mode to bilinears built 
from the Yang–Mills gauge bosons of G L × G R was in fact ab-
sent. On that basis, it was conjectured in [17] that there exists 
a consistent Pauli reduction of the (n + d)-dimensional bosonic 
string on a group manifold G of dimension d, yielding a the-
ory in n dimensions containing the metric, the Yang–Mills gauge 
bosons of G L × G R , and d2 + 1 scalar fields which parameterise 
R × SO(d, d)/(SO(d) × SO(d)). Further support for the conjectured 
consistency was provided in [13], where it was observed that the 
K = SO(d) × SO(d) maximal compact subgroup of the enhanced 
O (d, d) global symmetry of the T d reduction of the bosonic string 
is large enough to contain the G L × G R gauge group as a subgroup.

In this paper, we shall present a complete and constructive 
proof of the consistency of the Pauli reduction of the bosonic string 
on the group manifold G . Our construction makes use of the re-
cent developments realising non-toroidal compactifications of su-
pergravity via generalised Scherk–Schwarz-type reductions [18] on 
an extended spacetime within duality covariant reformulations of 
the higher-dimensional supergravity theories [19–28]. In this lan-
guage, consistency of a truncation ansatz translates into a set of 
differential equations to be satisfied by the group-valued Scherk–
Schwarz twist matrix U encoding all dependence on the inter-
nal coordinates. Most recently, this has been put to work in the 
framework of exceptional field theory in order to derive the full 
Kaluza–Klein truncation of IIB supergravity on a 5-sphere to mass-
less N = 8 supergravity in five dimensions [29,30]. In this paper, 
we explicitly construct the SO(d, d) valued twist matrix describing 
the Pauli reduction of the bosonic string on a group manifold G in 
terms of the Killing vectors of the group manifold. We show that 
it satisfies the relevant consistency equations, thereby establishing 
consistency of the truncation. From the Scherk–Schwarz reduction 
formulas we then read off the explicit truncation ansätze for all 
fields of the bosonic string. We find agreement with the linearised 
ansatz proposed in [17] and for the metric we confirm the non-
linear reduction ansatz conjectured in [13].

Our solution for the twist matrix straightforwardly generalises 
to the case when G is a non-compact group. In this case, the con-
struction describes the consistent reduction of the bosonic string 
on an internal manifold Md whose isometry group is given by 
the maximally compact subgroup K L × K R ⊂ G L × G R . The trunca-
tion retains not only the gauge bosons of the isometry group, but 
the gauge group of the lower-dimensional theory enhances to the 
full non-compact G L × G R . At the scalar origin, the gauge group is 
broken down to its compact part. This is a standard scenario in su-
pergravity with non-compact gauge groups: for the known sphere 
reductions the analogous generalisations describe the compactifi-
cation on hyperboloids H p,q and lower-dimensional theories with 
SO(p, q) gauge groups [31,32,26,33].

The paper is organised as follows. In section 2 we briefly re-
view the O (d, d) covariant formulation of the low-energy effec-
tive action of the (n + d)-dimensional bosonic string. In section 3
we review how this framework allows the reformulation of con-
sistent truncations of the original theory as generalised Scherk–
Schwarz reductions on the extended space–time. We spell out the 
consistency equations for the Scherk–Schwarz twist matrix and 
construct an explicit solution in terms of the Killing vectors of 
the bi-invariant metric on a d-dimensional group manifold G . For 
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compact G , the construction results in the Pauli reduction of the 
bosonic string on G to a lower-dimensional theory with gauge 
group G × G . For non-compact G , the construction gives rise to 
a consistent truncation on an internal space Md whose isometry 
group is given by two copies of the maximally compact subgroup 
K ⊂ G . Again, the gauge group of the lower-dimensional theory is 
G × G . In section 4, we work out the complete non-linear reduc-
tion ansatz for the higher-dimensional fields, i.e. metric, two-form 
and dilaton. We discuss our findings in section 5, in particular the 
examples of consistent truncations of ten-dimensional N = 1 su-
pergravity down to four dimensions on products of spheres and 
hyperboloids.

2. O (d, d) covariant formulation of the (n + d)-dimensional 
bosonic string

Our starting point is the (n + d)-dimensional bosonic string (or 
NS–NS sector of the superstring)

S =
∫

dXn+d
√

|Ĝ| e−2φ
(

R + 4 Ĝμ̂ν̂∂μ̂φ∂ν̂φ − 1

12
Hμ̂ν̂ρ̂ Hμ̂ν̂ρ̂

)
,

(1)

with dilaton φ and three-form field strength Hμ̂ν̂ρ̂ ≡ 3 ∂[μ̂C ν̂ρ̂] . As 
described in the introduction, the conjecture of [17] states this 
theory admits a consistent Pauli reduction to n dimensions on a 
d-dimensional group manifold G retaining the full set of G L × G R

non-abelian gauge fields, according to the isometry group of the 
bi-invariant metric on G . In the following, for the explicit reduc-
tion formulas we will use the metric in the Einstein frame

Gμ̂ν̂ ≡ e−4βφ Ĝμ̂ν̂ , (2)

with β = 1/(n + d − 2), and split coordinates according to

{X μ̂} → {xμ, ym} , μ = 0, . . . ,n − 1 , m = 1, . . . ,d . (3)

The key tool in the following construction is double field the-
ory (DFT) [34–37], the duality covariant formulation of the bosonic 
string. Most suited for our purpose, is the reformulation of the ac-
tion (1) in which an O (d, d) subgroup of the full duality group is 
made manifest [38]. This is obtained by Kaluza–Klein decomposing 
all fields according to n external and d internal dimensions (keep-
ing the dependence on all (n +d) coordinates) and rearranging the 
various components into O (d, d) objects, in terms of which the ac-
tion (1) can be rewritten in the form

S =
∫

dxndY 2d
√|g| e−2�

(
R̂+ 4 gμν Dμ�Dν�

− 1

12
HμνρHμνρ + 1

8
gμν DμHMN DνHMN

− 1

4
HMNFμνMFμν

N + 1

4
HMN∂M gμν ∂N gμν +R(�,H)

)
.

(4)

Formally, this theory lives on an extended space of dimension 
(n + 2d) with coordinates {xμ, Y M}, with all fields subject to the 
section constraint ∂M ⊗ ∂M ≡ 0 which effectively removes the d
non-physical coordinates. Fundamental SO(d, d) indices M , N are 
lowered and raised with the SO(d, d) invariant metric ηMN and 
its inverse. Moreover, HMN is a symmetric SO(d, d) group matrix, 
Hμνρ and Fμν

M are the non-abelian field strengths of an external 
two-form Bμν and vector Aμ

M , respectively, and R(�, H) is the 
scalar DFT curvature [37]. All derivatives and field strengths in (4)
are covariantised with respect to generalised diffeomorphisms on 
the extended space. Specifically,
Dμ� = ∂μ� −Aμ
M∂M� + 1

2
∂MAμ

M ,

DμHMN = ∂μHMN −Aμ
K ∂KHMN

− 2 ∂(MAμ
KHN)K + 2 ∂ KAμ (MHN)K ,

Fμν
M = ∂μAν

M − ∂νAμ
M − [

Aμ,Aν

]M
C − ∂MBμν ,

Hμνρ = 3 D[μBνρ] + 3A[μN∂νAρ]N −A[μN
[
Aν,Aρ]

]N
C , (5)

in terms of the Courant bracket [·, ·]C , see [38] for details.
The section constraint ∂M ⊗ ∂M ≡ 0 is solved by splitting the 

internal coordinates according to

{Y M} → {ym, ym} , (6)

in a light-cone basis where

ηMN ≡
(

0 δm
n

δm
n 0

)
, (7)

and restricting the dependence of all fields to the physical coor-
dinates ym by imposing ∂m ≡ 0, thereby reducing the extended 
space–time in (4) back to (n + d) dimensions. Upon breaking the 
DFT field content accordingly, and rearranging of fields, the O (d, d)

covariant form (4) then reproduces the bosonic string (1). The 
precise dictionary can be straightforwardly worked out by match-
ing the gauge and diffeomorphism transformations of the various 
fields. For the DFT p-forms and metric this yield

Aμ
m = Aμ

m ≡ GmnGμn , Aμ m = − (Cμ m − Aμ
nCnm) ,

Bμν = Cμν + 2A[μmCν] m + A[μm Aν]nCmn + A[μm Aν]m ,

gμν = e4βφ (Gμν − Aμ
m Aν

nGmn) . (8)

The dictionary for the DFT scalar fields is most conveniently ob-
tained by comparing the transformation of the DFT vector fields 
under generalised external diffeomorphisms to the transformations 
in the original theory (1) and yields

Hmn = e−4βφ Gmn , Hm
n = e−4βφ GnkCkm ,

Hmn = e−4βφ GklCkmCln + e4βφ Gmn ,

e� = e
β
γ φ

(det Gmn)
−1/4 , (9)

with γ = 1
n−2 . With the dictionary (8), (9), and imposing ∂m ≡ 0, 

the O (d, d) covariant action (4) reduces to the original action (1)
of the bosonic string. The reduction ansatz on the other hand will 
be most compactly formulated in terms of the O (d, d) objects.

3. Generalised Scherk–Schwarz ansatz and consistency equations

An important property of the O (d, d) covariant form of the ac-
tion (4) is the fact that particular solutions and truncations of the 
theory take a much simpler form in terms of the O (d, d) objects 
Aμ

M , HMN , etc., as opposed to the original fields of the bosonic 
string (1). In particular, consistent truncations to n dimensions can 
be described by a generalised Scherk–Schwarz ansatz in which the 
dependence on the compactified coordinates Y M is carried by an 
SO(d, d) matrix U M

A and a scalar function ρ , according to [19,20]1

HMN = U M
A(y)M AB(x)U N

B(y) , e� = ρ(n−2)/2(y) eϕ(x) ,

Aμ
M = (U−1)A

M(y) Aμ
A(x) , Bμν = Bμν(x) ,

gμν = e4γ ϕ(x) gμν(x) . (10)

1 Since with (4) we use DFT in its split form with internal and external coordi-
nates, the reduction ansatz (10) resembles the corresponding ansatz in exceptional 
field theory [26] for the p-forms and metric.
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Here, Aμ
M and Bμν are the gauge vectors and two-form of 

the reduced theory. The symmetric SO(d, d) group valued ma-
trix M AB(x) can be thought of as parameterising the coset space 
SO(d, d)/(SO(d) ×SO(d)), and together with eϕ(x) carries the d2 +1
scalar fields of the reduced theory. The ansatz (10) describes a 
consistent truncation of (4), provided U M

A and ρ satisfy the con-
sistency equations

ηD[A (U−1)B
M(U−1)C]N∂M U N

D = f ABC = const. , (11)

ρ−1 ∂Mρ = −γ (U−1)A
N∂N U M

A , (12)

with the SO(d, d) invariant constant matrix ηAB and γ = 1
n−2 . If 

U M
A and ρ in addition depend only on the physical coordinates 

on the extended space (6)

∂mU M
A = 0 = ∂mρ , (13)

the ansatz (10) likewise describes a consistent truncation of the 
original theory (1). As a consequence of this section condition, the 
Jacobi identity is automatically satisfied for f ABC upon using its 
explicit expression (11)

[X A, XB ] = −X AB
C XC (14)

where we have introduced the generalised structure constant 
X AB

C = f[AB D]ηDC . Then, for a given solution of (11), (12), the 
explicit reduction formulas for the original fields are obtained by 
combining (10) with the dictionary (8), (9), as we will work out 
shortly.

In order to explicitly solve the generalised Scherk–Schwarz con-
sistency conditions (11)–(13), let us first note that with the index 
split (6), and the parameterisation

U M
A = ηAB {

ZB m,KB
m}

,

(U−1)A
M = {

KA
m,ZA m

}
, (15)

of the SO(d, d) matrix, equation (11) turns into

LKAKB
m = −X AB

C KC
m ,

LKAZB m +KB
n (∂mZA n − ∂nZA m) = −X AB

C ZC m . (16)

The SO(d, d) property of U M
A translates into

2K(A
mZB) m = ηAB ≡

(
0 δa

b

δa
b 0

)
. (17)

In the following, we will construct an explicit solution of (16), 
(17) in terms of the Killing vectors of the bi-invariant metric on 
a d-dimensional group manifold G . For compact G , the resulting 
reduction describes the Pauli reduction of the bosonic string on G . 
For non-compact G , this describes a consistent truncation on an 
internal space Md with isometry group given by two copies of the 
maximally compact subgroup K ⊂ G . Specifically, we choose the 
KA as linear combinations of the G L × G R Killing vectors {Lm

a , Rm
a }, 

in the following way

KA
m ≡ {La

m + Ra
m, La m − Ra m} , (18)

with their algebra of Lie derivatives given by

LLa Lb = − fab
c Lc , LLa Rb = 0 , LRa Rb = fab

c Rc , (19)

in terms of the structure constants fab
c of g ≡ Lie G , and with 

indices a, b, . . . , raised and lowered by the associated Cartan–
Killing form κab ≡ fac

d fbd
c . Moreover, the bi-invariant metric on 

the group manifold can be expressed by

G̃mn ≡ −4 La
m La n = − 4 Ra

m Ra n . (20)
With (19), the ansatz (18) solves the first equation of (16), with 
structure constants X AB

C given by

Xabc = fabc , Xa
bc = fa

bc ,

Xa
b

c = f a
b

c , Xab
c = f ab

c , (21)

and all other entries vanishing. Indeed, these structure constants 
are of the required form X AB

C = f[AB D]ηDC , cf. (14). We may de-
fine the G L × G R invariant Cartan–Killing form of the algebra (14)

κAB ≡ 1

2
X AC

D XB D
C =

(
κab 0
0 κab

)
, (22)

such that the Killing vectors (18) satisfy

κ AB KA
mKB

n = − G̃mn , ηAB KA
mKB

n = 0 , (23)

and moreover κ ABηAB = 0.
In order to solve the second equation of (16), with the same 

structure constants (21), we start from the ansatz2

ZA m = −κA
B KB m +KA

n C̃nm . (24)

Here, the space–time index in the first term has been lowered with 
the group metric G̃mn from (20), and C̃mn = C̃[mn] represents an 
antisymmetric 2-form, such that the SO(d, d) property (17) is iden-
tically satisfied. With this ansatz for ZA m , the second equation of 
(16) turns into

κA
CKB

n (∂nKC m − ∂mKC n) − 3KA
k KB

n ∂[kC̃mn]
= 2ηD E X A(E

C κB)C KD m . (25)

The right-hand side of (25) vanishes by invariance of the Cartan–
Killing form κAB . From (23), one derives the following identity

∂[mKA n] = X AC
BκC DKB mKD n , (26)

for the derivative of the Killing vectors. Inserting this relation in
(25) gives

3KA
k∂[kC̃mn] = 2 X A

BCKB mKC n , (27)

where we have used κA
E XE D

CκD B = X A
BC . We note that both 

sides of this equation vanish under projection with ηD AKA p as 
a consequence of (23). Projecting instead with κ D AKA p , equation 
(27) reduces to an equation for C̃mn

3 ∂[kC̃mn] = H̃kmn ≡ − 2X AB DκD
CKA kKB mKC n . (28)

Explicitly, the flux H̃kmn takes the form

H̃kmn = −16 f abc La k Lb m Lc n = − 16 f abc Ra k Rb m Rc n, (29)

and can be integrated since ∂[k H̃lmn] = 0, due to the Jacobi identity 
on fabc . We have thus solved the second equation of (16).

With (18), (24), the remaining consistency equation (12) re-
duces to

(n − 2)KA
m∂m logρ = ∂mKA

m = − ̃mn
mKA

n ,

=⇒ ρ = (det G̃mn)
−γ /2 . (30)

We have thus determined the SO(d, d) matrix U M
A and the scalar 

function ρ solving the system (11), (12) in terms of the Killing vec-
tors on a group manifold G , and a two-form determined by (28). 
The resulting structure constants are given by (21) such that the 
gauge group of the reduced theory is given by G L × G R .

2 Let us stress that our notation is such that adjoint G indices a, b, . . . are raised 
and lowered with the Cartan–Killing form κab , whereas fundamental SO(d, d) in-
dices A, B, . . . are raised and lowered with the SO(d, d) invariant metric ηAB from 
(17) and not with the G-dependent Cartan–Killing form κAB from (22).
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4. Reduction ansatz and reduced theory

We now have all the ingredients to read off the full non-linear 
reduction ansatz of the bosonic string (1). Combining the DFT re-
duction formulas (10) with the dictionary (8), (9), and the explicit 
expressions (18), (24) for the Scherk–Schwarz twist matrix, we ob-
tain

ds2 = �−2γ (x, y) gμν(x)dxμdxν

+ Gmn(x, y)
(

dym +KA
m(y)A A

μ(x)dxμ
)

×
(

dyn +KB
n(y)AB

ν (x)dxν
)

, (31)

for the metric in the Einstein frame, with Gmn(x, y) given by the 
inverse of

Gmn(x, y) = �2γ (x, y)KA
m(y)KB

n(y)e4γ ϕ(x)M AB(x) . (32)

The dilaton and the original two-forms are given by

e4βφ = �2γ (x, y) e4γ ϕ(x)

Cmn = C̃mn(y) + �2γ (x, y) κA
DKD mKB

p

× G pn(x, y) e4γ ϕ(x)M AB(x) ,

Cμ m =
(
κA

DKD m + �2γ (x, y) κC
EKA

nKE nKD
p

× G pm(x, y) e4γ ϕ(x)MC D(x)
)

Aμ
A(x) ,

Cμν = Bμν(x) − κB
CKA

m KC m A[μ A(x)Aν]B(x)

− �2γ (x, y) κC
E KB

nKE n KD
p KA

m

× G pm(x, y) e4γ ϕ(x)MC D(x) A[μ A(x)Aν]B(x) , (33)

where we have introduced the function �2(x, y) ≡ det (G̃mn(y))−1 ·
det (Gmn(x, y)). In these expressions, all space–time indices on the 
Killing vectors KA

m are raised and lowered with the metric G̃mn(y)

from (20), rather than with the full metric Gmn(x, y). For the group 
manifold G = SU(2), the construction describes the S3 reduction 
of the bosonic string, for which the full reduction ansatz has been 
found in [39]. For general compact groups, the reduction ansatz for 
the internal metric (32) was correctly conjectured in [13].3

In order to compare our formulas to the linearised result given 
in [17], we first note that for compact G , we may normalise the 
Cartan–Killing form as κAB = −δAB , such that the background (at 
M AB(x) = δAB ) is given by

G̊mn = G̃mn , C̊mn = C̃mn , φ̊ = 0 . (34)

We then linearise the reduction formulas (31)–(33) around the 
scalar origin

M AB(x) = δAB + mAB(x) + . . . , (35)

and (back in the string frame) obtain

Ĝmn(x, y) = G̃mn(y) + ĥmn(x, y) + . . . ,

Cmn(x, y) = C̃mn(y) + k̂mn(x, y) + . . . , (36)

3 The translation uses an explicit parameterisation of the SO(d, d) matrix M AB in 
a basis where ηAB is diagonal, as

M̃ AB =
(

(1 + P P t)1/2 P
P t (1 + P t P )1/2

)
,

in terms of an unconstrained d × d matrix Pa
b .
with

ĥmn(x, y) = −mAB(x)KA
m(y)KB

n(y) ,

k̂mn(x, y) = mAB(x) κ ADKD m(y)KB
n(y) , (37)

as well as

φ = ϕ(x) + 1

4
G̃mnĥmn + . . . , (38)

for the dilaton, where we have used the linearisation �(x, y) =
1 + 1

2 G̃mnĥmn − 2dβφ + . . . . Parameterising the scalar fluctuations 
(35) as

mAB ≡
(

a −b
b −a

)
AB

, (39)

with symmetric a and antisymmetric b, in accordance with the 
SO(d, d) property of M AB , we finally obtain the fluctuations

ĥmn + k̂mn = Sab(x)La n(y)Rb m(y) ,

φ = ϕ(x) + 1

4
Sab(x)La

m(y)Rb m(y) , (40)

with Sab ≡ 4 
(
aab + bab

)
. These precisely reproduces the linearised 

result given in [17].
After the full non-linear reduction (31)–(33), the reduced the-

ory is an n-dimensional gravity coupled to a 2-form and 2d gauge 
vectors with gauge group G L × G R . The (d2 +1) scalar fields couple 
as an R × SO(d, d)/(SO(d) × SO(d)) coset space sigma model, and 
come with a scalar potential [40,41]

V (x) = 1

12
e4γ ϕ(x) X AB

C XD E
F M AD(x)

×
(

M B E(x)MC F (x) + 3 δE
C δB

F

)
, (41)

with the structure constants X AB
C from (21). Due to the dilaton 

prefactor, this potential cannot support (A)dS geometries, but only 
Minkowski or domain wall solutions.

Let us finally comment on adding a cosmological term e4βφ� in 
the higher-dimensional theory (1). E.g. for the bosonic string such 
a term would arise as conformal anomaly in dimension n +d �= 26. 
In the Einstein frame, the modified action takes the form

S =
∫

dXn+d
√|G|

(
R + 4 Gμ̂ν̂∂μ̂φ∂ν̂φ

− 1

12
e−8βφ Hμ̂ν̂ρ̂ Hμ̂ν̂ρ̂ + e4βφ�

)
, (42)

with constant �. With the O (d, d) dictionary (9), it follows that 
the effect of this term in the O (d, d) covariant action (4) is a sim-
ilar term

Lc = √|g| e−2�� , (43)

manifestly respecting O (d, d) covariance. The presence of this term 
thus does not interfere with the consistency of the truncation 
ansatz and simply results in a term

Lc = √|g| e4γ ϕ� , (44)

in the reduced theory, as already argued in [17,39].
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5. Conclusions

We have in this paper given a complete and constructive proof 
of the consistency of the Pauli reduction of the low-energy effec-
tive action of the bosonic string on the group manifold G , proving 
the conjecture of [17]. The construction is based on the O (d, d)

covariant reformulation of the original theory in which the consis-
tent truncations of the latter are rephrased as generalised Scherk–
Schwarz reductions on an extended spacetime. We have explicitly 
constructed the relevant SO(d, d) valued twist matrix, carrying the 
dependence on the internal variables, in terms of the Killing vec-
tors of the group manifold G . From the twist matrix, we have 
further read off the full non-linear reduction ansätze for all fields 
of the bosonic string. The construction is another example of the 
power of the generalised Scherk–Schwarz reductions on extended 
spacetime and hints towards a more systematic understanding of 
the conditions under which consistent Pauli reductions are pos-
sible. In this respect, it would be very interesting to classify the 
possible solutions of the system of equations (16) encoding the 
consistent reduction.

For a compact group manifold G , the obtained twist matrix de-
scribes the consistent Pauli reduction of the bosonic string on G . 
Interestingly, the construction straightforwardly generalises to the 
case when G is a non-compact group. In this case, the result-
ing twist matrix is still built from the Killing vectors on G , but 
describes the consistent reduction of the bosonic string on an in-
ternal manifold Md whose metric is read off from (32) as

G̊mn = (det H̊/det G̃)β H̊mn , with

H̊mn ≡ KA
m(y)KB

n(y) δAB , (45)

and G̃mn defined in (20) as the bi-invariant metric on G . It fol-
lows that the isometry group of this background metric G̊mn is 
the maximally compact subgroup K L × K R ⊂ G L × G R . The trun-
cation in this case retains not only the gauge bosons of the isom-
etry group, but the gauge group of the lower-dimensional theory 
enhances to the full non-compact G L × G R . At the scalar origin, 
the non-compact gauge group is broken down to its compact part 
K L × K R . This is a standard scenario in supergravity. For the known 
sphere reductions the corresponding generalisation describes the 
compactification on non-compact hyperboloidal spaces H p,q induc-
ing lower-dimensional theories with SO(p, q) gauge groups [31,32,
26,33]. Similar to (45), the background 2-form C̊mn is read off from 
(33) and in this case differs from C̃mn by a contribution from the 
second term.

In general, the background geometry (34) or (45) does not 
provide a solution to the higher-dimensional field equations. This 
corresponds to the fact that the scalar potential (41) in general 
does not possess a stationary point at the scalar origin. However, 
a quick computation shows that at the origin M AB = δAB , the po-
tential (41) is always stationary with respect to variation of the 
parameters of M AB , such that there is a ground state with running 
dilaton ϕ(x). Via (31)–(33), this domain wall solution is uplifted to 
the higher-dimensional theory.

A necessary and sufficient condition for the existence of a 
ground state with constant dilaton is V |M AB =δAB = 0, i.e. neces-
sarily a Minkowski vacuum. Evaluating the scalar potential at the 
origin translates this condition into

0
!= V

∣∣∣
M AB=δAB

= 2

3

(
2 nnon-cp − ncp

)
, (46)

with ncp, nnon-cp denoting the number of compact and non-
compact generators of G , respectively. A number of groups satisfy 
this condition
G = SO(1,5) , SO(5,20) , SO(20,76) , . . . ,

G = SU(1,4) , SU(4,15) , SU(15,56) , . . . ,

G = E6(−26) , with compact F4 , (47)

thus allowing for a consistent truncation of the bosonic string 
around Minkn × Mdim G , the latter equipped with the metric (45). 
While these examples are presumably more of a mathematical cu-
riosity, a group of more physical relevance is the choice

G = SO∗(4) ≡ SO(3) × SO(2,1) , (48)

satisfying the condition (46). With this group, the above construc-
tion describes the consistent truncation of ten-dimensional N = 1
supergravity down to four dimensions on the manifold S3 × H2,2

giving rise to a half-maximal SO(4) × SO(2, 2) gauged theory in 
four dimensions with Minkowski vacuum. The form of the vacuum 
resembles the Minkowski vacua found in [42] with uplift to eleven 
dimensions. It would be very interesting to embed this vacuum 
into the maximal theories allowing for Minkowski vacua [43,44]
whose respective gauge groups SO∗(8) and SO(4) × SO(2, 2) � T 16

indeed contain two copies of (48). The embedding of the maximal 
theory in higher dimensions may then be addressed similar to the 
construction of this paper within the proper full exceptional field 
theory [45].

Among the interesting examples with running dilaton, our con-
struction includes the consistent truncation on S3 × S3 correspond-
ing to the compact choice G = SO(4). In this case, the above con-
struction gives the consistent embedding of SO(4)2-gauged half-
maximal supergravity into ten dimensions, extending the construc-
tion of [46], in which the scalar sector was truncated to the dila-
ton. Again, it would be interesting to embed this truncation into 
the maximal theory. It is likely that different embeddings into IIA 
and IIB may give rise to inequivalent maximal four-dimensional 
gaugings, as observed for the IIA/IIB S3 reductions to seven di-
mensions [47].

Let us finally mention that the presented construction provides 
another example of globally geometric non-toroidal compactifi-
cations inducing non-geometric fluxes. In the language of [48], 
the structure constants (21) induced by this reduction combine a 
3-form flux Habc with non-geometric Q a

bc flux. However, despite 
their non-geometric appearance, the fluxes satisfy the condition 
f K MN f K MN = 0, necessary for a potential geometric origin [49], 
which we have provided here. For the compactifications on S3 and 
S3 × S3, this scenario has been discussed in [50,51], see also [52].

Acknowledgements

We thank Gianguido Dall’Agata and Olaf Hohm for help-
ful discussions. C.N.P. is supported in part by DOE grant DE-
FG02-13ER42020.

References

[1] T. Kaluza, On the problem of unity in physics, Sitzungsber. Preuss. Akad. Wiss. 
Berlin. Math. Phys. K 1 (1921) 966–972.

[2] O. Klein, Quantum theory and five-dimensional theory of relativity, Z. Phys. 37 
(1926) 895–906.

[3] E. Cremmer, B. Julia, The N = 8 supergravity theory. 1. The Lagrangian, Phys. 
Lett. B 80 (1978) 48.

[4] E. Cremmer, B. Julia, The SO(8) supergravity, Nucl. Phys. B 159 (1979) 141.
[5] B. DeWitt, in: Relativity, Groups and Topology, Les Houches, 1963, Gordon and 

Breach, 1964.
[6] M.J. Duff, C.N. Pope, Kaluza–Klein supergravity and the seven-sphere, in: S. Fer-

rara, J. Taylor, P. van Nieuwenhuzen (Eds.), Supersymmetry and Supergravity 
’82, World Scientific, Singapore, 1983, pp. 183–228.

[7] B. Biran, F. Englert, B. de Wit, H. Nicolai, Gauged N = 8 supergravity and its 
breaking from spontaneous compactification, Phys. Lett. B 124 (1983) 45;
B. Biran, F. Englert, B. de Wit, H. Nicolai, Phys. Lett. B 128 (1983) 461 (Erratum).

http://refhub.elsevier.com/S0370-2693(15)00918-1/bib4B616C757A613A313932317475s1
http://refhub.elsevier.com/S0370-2693(15)00918-1/bib4B616C757A613A313932317475s1
http://refhub.elsevier.com/S0370-2693(15)00918-1/bib4B6C65696E3A313932367476s1
http://refhub.elsevier.com/S0370-2693(15)00918-1/bib4B6C65696E3A313932367476s1
http://refhub.elsevier.com/S0370-2693(15)00918-1/bib4372656D6D65723A313937386473s1
http://refhub.elsevier.com/S0370-2693(15)00918-1/bib4372656D6D65723A313937386473s1
http://refhub.elsevier.com/S0370-2693(15)00918-1/bib4372656D6D65723A313937397570s1
http://refhub.elsevier.com/S0370-2693(15)00918-1/bib4465576974743A31393633s1
http://refhub.elsevier.com/S0370-2693(15)00918-1/bib4465576974743A31393633s1
http://refhub.elsevier.com/S0370-2693(15)00918-1/bib447566663A313938336771s1
http://refhub.elsevier.com/S0370-2693(15)00918-1/bib447566663A313938336771s1
http://refhub.elsevier.com/S0370-2693(15)00918-1/bib447566663A313938336771s1
http://refhub.elsevier.com/S0370-2693(15)00918-1/bib426972616E3A313938326567s1
http://refhub.elsevier.com/S0370-2693(15)00918-1/bib426972616E3A313938326567s1
http://refhub.elsevier.com/S0370-2693(15)00918-1/bib426972616E3A313938326567s2


284 A. Baguet et al. / Physics Letters B 752 (2016) 278–284
[8] M. Duff, B. Nilsson, C. Pope, N. Warner, On the consistency of the Kaluza–Klein 
ansatz, Phys. Lett. B 149 (1984) 90.

[9] B. de Wit, H. Nicolai, The consistency of the S7 truncation in D = 11 super-
gravity, Nucl. Phys. B 281 (1987) 211.

[10] B. de Wit, H. Nicolai, Deformations of gauged SO(8) supergravity and su-
pergravity in eleven dimensions, J. High Energy Phys. 1305 (2013) 077, 
arXiv:1302.6219.

[11] H. Nicolai, K. Pilch, Consistent truncation of d = 11 supergravity on AdS4 × S7, 
J. High Energy Phys. 1203 (2012) 099, arXiv:1112.6131.

[12] H. Godazgar, M. Godazgar, H. Nicolai, Nonlinear Kaluza–Klein theory for dual 
fields, Phys. Rev. D 88 (2013) 125002, arXiv:1309.0266.
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