39 research outputs found

    VKORC1 mutation in European populations of Rattus norvegicus with first data for Italy and the report of a new amino acid substitution.

    Get PDF
    In the Norway rat, Rattus norvegicus, anticoagulant rodenticide resistance is mainly associated with mutations in the third exon of the Vitamin K epoxide reductase complex subunit 1 (VKORC1). Identification of the resistant wild populations is very important to improve the control practices and to limit the damages due to inadequate use of the anticoagulant rodenticide. In this study, we determined the distribution of the third exon mutations in poorly investigated areas of Africa, Europe and the Middle East. In particular, we investigated the phenomenon for the first time in the Italian peninsula. We obtained sequences of the third exon for 133 Norway rats from 37 localities in Africa, Europe and the Middle East. For additional analysis, we retrieved information in literature on amino acid substitution in 1136 third exon sequences of Norway rats from Europe, the Far East, North America and South America. However, we found third exon mutations only in Europe and the Far East with the Y139F mutation shared between the two areas. Europe has the higher number of mutant individuals and Y139C mutation prevails. In Italy, we found a single missense mutation (I123S) in a Venetian locality. This homozygote mutation, is not know in literature to be associated with resistance, but it is very similar to a mutation that confers resistance in humans (I123N). This similarity and its high local frequency makes it a good candidate for future testing. Our results provide useful data to better understand the resistance phenomenon and to plan targeted control actions

    Low prevalence of human enteropathogenic Yersinia spp. in brown rats (Rattus norvegicus) in Flanders

    Get PDF
    Brown rats (Rattus norvegicus) have been identified as potential carriers of Yersinia enterocolitica and Y. pseudotuberculosis, the etiological agents of yersiniosis, the third most reported bacterial zoonosis in Europe. Enteropathogenic Yersinia spp. are most often isolated from rats during yersiniosis cases in animals and humans, and from rats inhabiting farms and slaughterhouses. Information is however lacking regarding the extent to which rats act as carriers of these Yersinia spp.. In 2013, 1088 brown rats across Flanders, Belgium, were tested for the presence of Yersinia species by isolation method. Identification was performed using MALDI-TOF MS, PCR on chromosomal-and plasmid-borne virulence genes, biotyping and serotyping. Yersinia spp. were isolated from 38.4% of the rats. Of these, 53.4% were designated Y. enterocolitica, 0.7% Y. pseudotuberculosis and 49.0% other Yersinia species. Two Y. enterocolitica possessing the virF-, ail- and ystA-gene were isolated. Additionally, the ystB-gene was identified in 94.1% of the other Y. enterocolitica isolates, suggestive for biotype 1A. Three of these latter isolates simultaneously possessed the ail-virulence gene. Significantly more Y. enterocolitica were isolated during winter and spring compared to summer. Based on our findings we can conclude that brown rats are frequent carriers for various Yersinia spp., including Y. pseudotuberculosis and (human pathogenic) Y. enterocolitica which are more often isolated during winter and spring

    Organic matter cycling along geochemical, geomorphic and disturbance gradients in forests and cropland of the African Tropics – Project TropSOC Database Version 1.0

    Get PDF
    The African Tropics are hotspots of modern-day land-use change and are, at the same time, of great relevance for the cycling of carbon (C) and nutrients between plants, soils and the atmosphere. However, the consequences of land conversion on biogeochemical cycles are still largely unknown as they are not studied in a landscape context that defines the geomorphic, geochemically and pedological framework in which biological processes take place. Thus, the response of tropical soils to disturbance by erosion and land conversion is one of the great uncertainties in assessing the carrying capacity of tropical landscapes to grow food for future generations and in predicting greenhouse gas fluxes (GHG) from soils to the atmosphere and, hence, future earth system dynamics. Here, we describe version 1.0 of an open access database created as part of the project &ldquo;Tropical soil organic carbon dynamics along erosional disturbance gradients in relation to variability in soil geochemistry and land use&rdquo; (TropSOC). TropSOC v1.0 contains spatial and temporal explicit data on soil, vegetation, environmental properties and land management collected from 136 pristine tropical forest and cropland plots between 2017 and 2020 as part of several monitoring and sampling campaigns in the Eastern Congo Basin and the East African Rift Valley System. The results of several laboratory experiments focusing on soil microbial activity, C cycling and C stabilization in soils complement the dataset to deliver one of the first landscape scale datasets to study the linkages and feedbacks between geology, geomorphology and pedogenesis as controls on biogeochemical cycles in a variety of natural and managed systems in the African Tropics. The hierarchical and interdisciplinary structure of the TropSOC database allows for linking a wide range of parameters and observations on soil and vegetation dynamics along with other supporting information that may also be measured at one or more levels of the hierarchy. TropSOC&rsquo;s data marks a significant contribution to improve our understanding of the fate of biogeochemical cycles in dynamic and diverse tropical African (agro-)ecosystems. TropSOC v1.0 can be accessed through the supplementary material provided as part of this manuscript or as a separate download via the websites of the Congo Biogeochemistry observatory and the GFZ data repository where version updates to the database will be provided as the project develops.</p

    Prevalence of Fox Tapeworm in Invasive Muskrats in Flanders (North Belgium)

    No full text
    One way in which invasive alien species affect their environment is by acting as pathogen hosts. Pathogens limited by the availability of the native host species can profit from the presence of additional hosts. The muskrat (Ondatra zibethicus) is known to act as an intermediate host for the fox tapeworm (Echinococcus multilocularis). From 2009 to 2017, 15,402 muskrats caught in Flanders and across the border with Wallonia and France were collected and dissected with the aim of understanding the prevalence of this parasite in muskrats. Visual examination of the livers revealed 202 infected animals (1.31%). Out of the 9421 animals caught in Flanders, we found 82 individuals (0.87%) infected with E. multilocularis. No increase in prevalence was observed during this study. All of the infected animals in Flanders were found in municipalities along the Walloon border. We did not observe a northward spread of E. multilocularis infection from Wallonia to Flanders. We hypothesise that the low prevalence is the result of the reduced availability of intermediate hosts and the successful control programme which is keeping muskrat densities in the centre of the region at low levels and is preventing influx from other areas. Our results illustrate that muskrats are good sentinels for E. multilocularis and regular screening can gain valuable insight into the spread of this zoonosis

    Assessing animal welfare impact of fourteen control and dispatch methods for house mouse (Mus musculus), Norway rat (Rattus norvegicus) and black rat (Rattus rattus)

    No full text
    Population control of the house mouse (Mus musculus), Norway rat (Rattus norvegicus) and black rat (Rattus rattus) is common practice worldwide. Our objective was to assess the impact on animal welfare of lethal and non-lethal control methods, including three dispatch methods. We used the Sharp and Saunders welfare assessment model with eight experts scoring eleven control methods and three dispatch methods used on the three species. We presumed the methods were performed as prescribed, only taking into account the effect on the target animal (and not, for example, on non-target catches). We did not assess population control efficacy of the methods. Methods considered to induce the least suffering to the target animal were captive-bolt traps, electrocution traps and cervical dislocation, while those with the greatest impact were anticoagulants, cholecalciferol and deprivation. Experts indicated considerable uncertainty regarding their evaluation of certain methods, which emphasises the need for further scientific research. In particular, the impact of hydrogen cyanide, chloralose and aluminium phosphide on animal welfare ought to be investigated. The experts also stressed the need to improve Standard Operating Procedures and to incorporate animal welfare assessments in Integrated Pest Management (IPM). The results of our study can help laypeople, professionals, regulatory agencies and legislators making well-informed decisions as to which methods to use when controlling commensal rodents

    Data from: Successful eradication of a suburban Pallas’s squirrel Callosciurus erythraeus (Pallas 1779) (Rodentia, Sciuridae) population in Flanders (northern Belgium)

    No full text
    Despite a growing catalogue of eradication projects, documented successful vertebrate eradications on the mainland remain scarce. Reporting on successful campaigns is crucial to counter pessimism on ambitious programmes to tackle invasive species and to allow conservation practitioners, wildlife managers and scientist to learn from previous experience. Moreover, there is a need for basic information on the effectiveness of control methods and management strategies that can be used. In this note we report on a successful low-tech eradication campaign of a local population of Pallas’s squirrel Callosciurus erythraeus, a species of tree squirrel with documented ecological and socio-economic impacts in its invasive range. The population was eradicated from a suburban park of about 15 ha using baited mesh wire life traps, in five consecutive capture campaigns between October 2005 and January 2011. Using maximum likelihood estimation from catch-effort data we calculated initial densities in the park at 3 squirrels ha−1. Although control started quickly and the extent of the invasion was limited, the campaign took over 5 years and required an estimated investment of over €200,000 including 1.5 years of post-eradication surveying. We provide basic data on the methods used to eradicate this invasive rodent. Critical success factors and possible improvements with respect to the specific context of this case are discussed. Adding this species to the list of species of EU concern currently under development could provide incentive to minimise impact of this tree squirrel at the continental scale
    corecore