57 research outputs found

    Hygro-thermo-mechanical analysis and failure prediction in electronic packages by using peridynamics

    Get PDF
    This study presents an integrated approach for the simulation of hygro-thermo-vapor-deformation analysis of electronic packages by using peridynamics. This theory is suitable for such analysis because of its mathematical structure. Its governing equation is an integro-differential equation and it is valid regardless of the existence of material and geometric discontinuities in the structure. It permits the specification of distinct properties of interfaces between dissimilar materials in the direct modeling of thermal and moisture diffusion, and deformation. Therefore, it enables progressive damage analysis in materials or layered material systems such as the electronic packages. It describes the validation procedure by considering a particular package for each thermomechanical, hygromechanical deformation as well as vapor pressure predictions. Also, it presents results concerning failure sites and mechanisms due to hygro-thermo-vapor-deformation

    Consumer Decision-Making Styles for Singaporean College Consumers: An Exploratory Study

    Get PDF
    The purpose of this study was to investigate Singaporean consumers' decision-making styles (shopping styles) for sports products. This study used a scale of the Purchaser Style Inventory for Sport Products (PSISP) to identify if the scale was reliable. An instrument, consisting of 42 items under 9 dimensions, was administrated to 234 college students in Singapore. This study computed data factor analysis and alpha coefficients for scale reliability. The results indicated the generality of some consumer decision-making styles. Some similarities and differences as well as managerial implications for marketing research will be discussed

    Structural basis of SALM3 dimerization and synaptic adhesion complex formation with PTPσ

    Get PDF
    bioRxiv: doi: https://doi.org/10.1101/2020.01.09.893701Synaptic adhesion molecules play an important role in the formation, maintenance and refinement of neuronal connectivity. Recently, several leucine rich repeat (LRR) domain containing neuronal adhesion molecules have been characterized including netrin G-ligands, SLITRKs and the synaptic adhesion-like molecules (SALMs). Dysregulation of these adhesion molecules have been genetically and functionally linked to various neurological disorders. Here we investigated the molecular structure and mechanism of ligand interactions for the postsynaptic SALM3 adhesion protein with its presynaptic ligand, receptor protein tyrosine phosphatase sigma (PTP sigma). We solved the crystal structure of the dimerized LRR domain of SALM3, revealing the conserved structural features and mechanism of dimerization. Furthermore, we determined the complex structure of SALM3 with PTP sigma using small angle X-ray scattering, revealing a 2:2 complex similar to that observed for SALM5. Solution studies unraveled additional flexibility for the complex structure, but validated the uniform mode of action for SALM3 and SALM5 to promote synapse formation. The relevance of the key interface residues was further confirmed by mutational analysis with cellular binding assays and artificial synapse formation assays. Collectively, our results suggest that SALM3 dimerization is a pre-requisite for the SALM3-PTP sigma complex to exert synaptogenic activity.Peer reviewe

    Equivalent acceleration assessment of JEDEC moisture sensitivity levels using peridynamics

    Get PDF
    The moisture inside the IC packages induces the several deformation failures, such as popcorn crack and swelling during the solder reflowing process. In semiconductor industry, over the past few years, the equivalent acceleration time for JEDEC moisture sensitivity level has been updated based on the weight gain measurements when the package structure and materials were modified. It costs long test times which may induce the significant delay of new product development and reliability evaluation. Additionally, the weight gain equivalency may not be sufficient to determine the equivalent accelerated time. In this paper, the new approach for evaluating the equivalent acceleration test time for preconditioning is proposed using the numerical calculation by peridynamics (PD) theory. The essential of proposed method is analyzing a moisture concentration and a vapor pressure which can cause the moisture induced failure in IC packages without facing the discontinuity problems of moisture concentration along the interfaces

    Lamellar keratoplasty using position-guided surgical needle and M-mode optical coherence tomography

    Get PDF
    Deep anterior lamellar keratoplasty (DALK) is an emerging surgical technique for the restoration of corneal clarity and vision acuity. The big-bubble technique in DALK surgery is the most essential procedure that includes the air injection through a thin syringe needle to separate the dysfunctional region of the cornea. Even though DALK is a well-known transplant method, it is still challenged to manipulate the needle inside the cornea under the surgical microscope, which varies its surgical yield. Here, we introduce the DALK protocol based on the position-guided needle and M-mode optical coherence tomography (OCT). Depth-resolved 26-gage needle was specially designed, fabricated by the stepwise transitional core fiber, and integrated with the swept source OCT system. Since our device is feasible to provide both the position information inside the cornea as well as air injection, it enables the accurate management of bubble formation during DALK. Our results show that real-time feedback of needle end position was intuitionally visualized and fast enough to adjust the location of the needle. Through our research, we realized that position-guided needle combined with M-mode OCT is a very efficient and promising surgical tool, which also to enhance the accuracy and stability of DALK

    Stimulation of the Migration and Expansion of Adult Mouse Neural Stem Cells by the FPR2-Specific Peptide WKYMVm

    Get PDF
    Neural stem cells (NSCs) are multipotent cells capable of self-renewal and differentiation into different nervous system cells. Mouse NSCs (mNSCs) are useful tools for studying neurogenesis and the therapeutic applications of neurodegenerative diseases in mammals. Formyl peptide receptor 2 (FPR2), expressed in the central nervous system and brain, is involved in the migration and differentiation of murine embryonic-derived NSCs. In this study, we explored the effect of FPR2 activation in adult mNSCs using the synthetic peptide Trp-Lys-Tyr-Met-Val-D-Met-NH2 (WKYMVm), an agonist of FPR2. After isolation of NSCs from the subventricular zone of the adult mouse brain, they were cultured in two culture systems—neurospheres or adherent monolayers—to demonstrate the expression of NSC markers and phenotypes. Under different conditions, mNSCs differentiated into neurons and glial cells such as astrocytes, microglia, and oligodendrocytes. Treatment with WKYMVm stimulated the chemotactic migration of mNSCs. Moreover, WKYMVm-treated mNSCs were found to promote proliferation; this result was confirmed by the expansion of mNSCs in Matrigel and the increase in the number of Ki67-positive cells. Incubation of mNSCs with WKYMVm in a supplement-free medium enhanced the survival rate of the mNSCs. Together, these results suggest that WKYMVm-induced activation of FPR2 stimulates cellular responses in adult NSCs. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.1

    Large Linear Magnetoresistance in Heavily-Doped Nb:SrTiO\u3csub\u3e3\u3c/sub\u3e Epitaxial Thin Films

    Get PDF
    Interaction between electrons has long been a focused topic in condensed-matter physics since it has led to the discoveries of astonishing phenomena, for example, high-Tc superconductivity and colossal magnetoresistance (CMR) in strongly-correlated materials. In the study of strongly-correlated perovskite oxides, Nb-doped SrTiO3 (Nb:SrTiO3) has been a workhorse not only as a conducting substrate, but also as a host possessing high carrier mobility. In this work, we report the observations of large linear magnetoresistance (LMR) and the metal-to-insulator transition (MIT) induced by magnetic field in heavily-doped Nb:STO (SrNb0.2Ti0.8O3) epitaxial thin films. These phenomena are associated with the interplay between the large classical MR due to high carrier mobility and the electronic localization effect due to strong spin-orbit coupling, implying that heavily Nb-doped Sr(Nb0.2Ti0.8)O3 is promising for the application in spintronic devices

    MDGA1 negatively regulates amyloid precursor protein-mediated synapse inhibition in the hippocampus

    Get PDF
    Abstract Balanced synaptic inhibition, controlled by multiple synaptic adhesion proteins, is critical for proper brain function. MDGA1 (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu [MAM] domain-containing glycosylphosphatidylinositol anchor protein 1) suppresses synaptic inhibition in mammalian neurons, yet the molecular mechanisms underlying MDGA1-mediated negative regulation of GABAergic synapses remain unresolved. Here, we show that the MDGA1 MAM domain directly interacts with the extension domain of amyloid precursor protein (APP). Strikingly, MDGA1-mediated synaptic disinhibition requires the MDGA1 MAM domain and is prominent at distal dendrites of hippocampal CA1 pyramidal neurons. Down-regulation of APP in presynaptic GABAergic interneurons specifically suppressed GABAergic, but not glutamatergic, synaptic transmission strength and inputs onto both the somatic and dendritic compartments of hippocampal CA1 pyramidal neurons. Moreover, APP deletion manifested differential effects in somatostatin- and parvalbumin-positive interneurons in the hippocampal CA1, resulting in distinct alterations in inhibitory synapse numbers, transmission, and excitability. The infusion of MDGA1 MAM protein mimicked postsynaptic MDGA1 gain-of-function phenotypes that involve the presence of presynaptic APP. The overexpression of MDGA1 wild type or MAM, but not MAM-deleted MDGA1, in the hippocampal CA1 impaired novel object-recognition memory in mice. Thus, our results establish unique roles of APP-MDGA1 complexes in hippocampal neural circuits, providing unprecedented insight into trans-synaptic mechanisms underlying differential tuning of neuronal compartment-specific synaptic inhibition.Peer reviewe

    Polygenic risk score validation using Korean genomes of 265 early-onset acute myocardial infarction patients and 636 healthy controls

    Get PDF
    Background The polygenic risk score (PRS) developed for coronary artery disease (CAD) is known to be effective for classifying patients with CAD and predicting subsequent events. However, the PRS was developed mainly based on the analysis of Caucasian genomes and has not been validated for East Asians. We aimed to evaluate the PRS in the genomes of Korean early-onset AMI patients (n = 265, age <= 50 years) following PCI and controls (n = 636) to examine whether the PRS improves risk prediction beyond conventional risk factors. Results The odds ratio of the PRS was 1.83 (95% confidence interval [CI]: 1.69-1.99) for early-onset AMI patients compared with the controls. For the classification of patients, the area under the curve (AUC) for the combined model with the six conventional risk factors (diabetes mellitus, family history of CAD, hypertension, body mass index, hypercholesterolemia, and current smoking) and PRS was 0.92 (95% CI: 0.90-0.94) while that for the six conventional risk factors was 0.91 (95% CI: 0.85-0.93). Although the AUC for PRS alone was 0.65 (95% CI: 0.61-0.69), adding the PRS to the six conventional risk factors significantly improved the accuracy of the prediction model (P = 0.015). Patients with the upper 50% of PRS showed a higher frequency of repeat revascularization (hazard ratio = 2.19, 95% CI: 1.47-3.26) than the others. Conclusions The PRS using 265 early-onset AMI genomes showed improvement in the identification of patients in the Korean population and showed potential for genomic screening in early life to complement conventional risk prediction

    Stretchable and transparent electrodes based on in-plane structures

    Get PDF
    Stretchable electronics has attracted great interest with compelling potential applications that require reliable operation under mechanical deformation. Achieving stretchability in devices, however, requires a deeper understanding of nanoscale materials and mechanics beyond the success of flexible electronics. In this regard, tremendous research efforts have been dedicated toward developing stretchable electrodes, which are one of the most important building blocks for stretchable electronics. Stretchable transparent thin-film electrodes, which retain their electrical conductivity and optical transparency under mechanical deformation, are particularly important for the favourable application of stretchable devices. This minireview summarizes recent advances in stretchable transparent thin-film electrodes, especially employing strategies based on in-plane structures. Various approaches using metal nanomaterials, carbon nanomaterials, and their hybrids are described in terms of preparation processes and their optoelectronic/mechanical properties. Some challenges and perspectives for further advances in stretchable transparent electrodes are also discussed. © 2015 The Royal Society of Chemistry.open0
    corecore