137 research outputs found

    Model-based Robotic Dynamic Motion Control for the Robonaut 2 Humanoid Robot

    Get PDF
    Robonaut 2 (R2), an upper-body dexterous humanoid robot, has been undergoing experimental trials on board the International Space Station (ISS) for more than a year. R2 will soon be upgraded with two climbing appendages, or legs, as well as a new integrated model-based control system. This control system satisfies two important requirements; first, that the robot can allow humans to enter its workspace during operation and second, that the robot can move its large inertia with enough precision to attach to handrails and seat track while climbing around the ISS. This is achieved by a novel control architecture that features an embedded impedance control law on the motor drivers called Multi-Loop control which is tightly interfaced with a kinematic and dynamic coordinated control system nicknamed RoboDyn that resides on centralized processors. This paper presents the integrated control algorithm as well as several test results that illustrate R2's safety features and performance

    Assessment of peritoneal microbial features and tumor marker levels as potential diagnostic tools for ovarian cancer

    Get PDF
    Epithelial ovarian cancer (OC) is the most deadly cancer of the female reproductive system. To date, there is no effective screening method for early detection of OC and current diagnostic armamentarium may include sonographic grading of the tumor and analyzing serum levels of tumor markers, Cancer Antigen 125 (CA-125) and Human epididymis protein 4 (HE4). Microorganisms (bacterial, archaeal, and fungal cells) residing in mucosal tissues including the gastrointestinal and urogenital tracts can be altered by different disease states, and these shifts in microbial dynamics may help to diagnose disease states. We hypothesized that the peritoneal microbial environment was altered in patients with OC and that inclusion of selected peritoneal microbial features with current clinical features into prediction analyses will improve detection accuracy of patients with OC. Blood and peritoneal fluid were collected from consented patients that had sonography confirmed adnexal masses and were being seen at SIU School of Medicine Simmons Cancer Institute. Blood was processed and serum HE4 and CA-125 were measured. Peritoneal fluid was collected at the time of surgery and processed for Next Generation Sequencing (NGS) using 16S V4 exon bacterial primers and bioinformatics analyses. We found that patients with OC had a unique peritoneal microbial profile compared to patients with a benign mass. Using ensemble modeling and machine learning pathways, we identified 18 microbial features that were highly specific to OC pathology. Prediction analyses confirmed that inclusion of microbial features with serum tumor marker levels and control features (patient age and BMI) improved diagnostic accuracy compared to currently used models. We conclude that OC pathogenesis alters the peritoneal microbial environment and that these unique microbial features are important for accurate diagnosis of OC. Our study warrants further analyses of the importance of microbial features in regards to oncological diagnostics and possible prognostic and interventional medicine.Ope

    Authenticity, Culture and Language Learning

    Get PDF
    In philosophy, authenticity has been used with two meanings: one entails the notion of correspondence; the other entails the notion of genesis (Cooper, 1983: 15). As in certain branches of philosophy, language teaching has perhaps clung too long to the first of these notions of authenticity at the expense of the other. This paper reviews four key conceptualisations of authenticity which have emerged in the field of applied linguistics: text authenticity, authenticity of language competence, learner authenticity and classroom authenticity. If any of these types of authenticity is couched exclusively in terms of one usage or the other, it can lead to an impoverishment and objectification of the experience of language learning. Text authenticity can lead to a poverty of language; authenticity of competence can lead to a poverty of performance; learner authenticity can lead to a poverty of interpretation; classroom authenticity can lead to a poverty of communication. This paper proposes that a pedagogy of intercultural communication be informed by a more hybrid view of authenticity as a process of subjectification, derived from the Heideggerian concept of self-concern

    Magnetically Responsive Microbubbles as Delivery Vehicles for Targeted Sonodynamic and Antimetabolite Therapy of Pancreatic Cancer

    Get PDF
    Magnetically responsive microbubbles (MagMBs), consisting of an oxygen gas core and a phospholipid coating functionalised with Rose Bengal (RB) and/or 5-fluorouracil (5-FU), were assessed as a delivery vehicle for the targeted treatment of pancreatic cancer using combined antimetabolite and sonodynamic therapy (SDT). MagMBs delivering the combined 5-FU/SDT treatment produced a reduction in cell viability of over 50% when tested against a panel of four pancreatic cancer cell lines in vitro. Intravenous administration of the MagMBs to mice bearing orthotopic human xenograft BxPC-3 tumours yielded a 48.3% reduction in tumour volume relative to an untreated control group (p<0.05) when the tumour was exposed to both external magnetic and ultrasound fields during administration of the MagMBs. In contrast, application of an external ultrasound field alone resulted in a 27% reduction in tumour volume. In addition, activated caspase and BAX protein levels were both observed to be significantly elevated in tumours harvested from animals treated with the MagMBs in the presence of magnetic and ultrasonic fields when compared to expression of those proteins in tumours from either the control or ultrasound field only groups (p<0.05). These results suggest MagMBs have considerable potential as a platform to enable the targeted delivery of combined sonodynamic / antimetabolite therapy in pancreatic cancer

    Predicting Prokaryotic Ecological Niches Using Genome Sequence Analysis

    Get PDF
    Automated DNA sequencing technology is so rapid that analysis has become the rate-limiting step. Hundreds of prokaryotic genome sequences are publicly available, with new genomes uploaded at the rate of approximately 20 per month. As a result, this growing body of genome sequences will include microorganisms not previously identified, isolated, or observed. We hypothesize that evolutionary pressure exerted by an ecological niche selects for a similar genetic repertoire in those prokaryotes that occupy the same niche, and that this is due to both vertical and horizontal transmission. To test this, we have developed a novel method to classify prokaryotes, by calculating their Pfam protein domain distributions and clustering them with all other sequenced prokaryotic species. Clusters of organisms are visualized in two dimensions as ‘mountains’ on a topological map. When compared to a phylogenetic map constructed using 16S rRNA, this map more accurately clusters prokaryotes according to functional and environmental attributes. We demonstrate the ability of this map, which we term a “niche map”, to cluster according to ecological niche both quantitatively and qualitatively, and propose that this method be used to associate uncharacterized prokaryotes with their ecological niche as a means of predicting their functional role directly from their genome sequence

    Lifestyle intervention in obese pregnancy and cardiac remodelling in 3-year olds: children of the UPBEAT RCT

    Get PDF
    Background/Objectives: Obesity in pregnancy has been associated with increased childhood cardiometabolic risk and reduced life expectancy. The UK UPBEAT multicentre randomised control trial was a lifestyle intervention of diet and physical activity in pregnant women with obesity. We hypothesised that the 3-year-old children of women with obesity would have heightened cardiovascular risk compared to children of normal BMI women, and that the UPBEAT intervention would mitigate this risk. Subjects/Methods: Children were recruited from one UPBEAT trial centre. Cardiovascular measures included blood pressure, echocardiographic assessment of cardiac function and dimensions, carotid intima-media thickness and heart rate variability (HRV) by electrocardiogram. Results: Compared to offspring of normal BMI women (n = 51), children of women with obesity from the trial standard care arm (n = 39) had evidence of cardiac remodelling including increased interventricular septum (IVS; mean difference 0.04 cm; 95% CI: 0.018 to 0.067), posterior wall (PW; 0.03 cm; 0.006 to 0.062) and relative wall thicknesses (RWT; 0.03 cm; 0.01 to 0.05) following adjustment. Randomisation of women with obesity to the intervention arm (n = 31) prevented this cardiac remodelling (intervention effect; mean difference IVS −0.03 cm (−0.05 to −0.008); PW −0.03 cm (−0.05 to −0.01); RWT −0.02 cm (−0.04 to −0.005)). Children of women with obesity (standard care arm) compared to women of normal BMI also had elevated minimum heart rate (7 bpm; 1.41 to 13.34) evidence of early diastolic dysfunction (e prime) and increased sympathetic nerve activity index by HRV analysis. Conclusions: Maternal obesity was associated with left ventricular concentric remodelling in 3-year-old offspring. Absence of remodelling following the maternal intervention infers in utero origins of cardiac remodelling. Clinical trial registry name and registration number: The UPBEAT trial is registered with Current Controlled Trials, ISRCTN89971375

    Complete Genome Sequence of the Complex Carbohydrate-Degrading Marine Bacterium, Saccharophagus degradans Strain 2-40T

    Get PDF
    The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40) is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment

    Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1

    Get PDF
    Smits THM, Rezzonico F, Kamber T, et al. Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1. PLoS ONE. 2011;6(7): e22247.Background: Pantoea vagans is a commercialized biological control agent used against the pome fruit bacterial disease fire blight, caused by Erwinia amylovora. Compared to other biocontrol agents, relatively little is currently known regarding Pantoea genetics. Better understanding of antagonist mechanisms of action and ecological fitness is critical to improving efficacy. Principal Findings: Genome analysis indicated two major factors contribute to biocontrol activity: competition for limiting substrates and antibacterial metabolite production. Pathways for utilization of a broad diversity of sugars and acquisition of iron were identified. Metabolism of sorbitol by P. vagans C9-1 may be a major metabolic feature in biocontrol of fire blight. Biosynthetic genes for the antibacterial peptide pantocin A were found on a chromosomal 28-kb genomic island, and for dapdiamide E on the plasmid pPag2. There was no evidence of potential virulence factors that could enable an animal or phytopathogenic lifestyle and no indication of any genetic-based biosafety risk in the antagonist. Conclusions: Identifying key determinants contributing to disease suppression allows the development of procedures to follow their expression in planta and the genome sequence contributes to rationale risk assessment regarding the use of the biocontrol strain in agricultural systems
    corecore