72 research outputs found

    Model-based Robotic Dynamic Motion Control for the Robonaut 2 Humanoid Robot

    Get PDF
    Robonaut 2 (R2), an upper-body dexterous humanoid robot, has been undergoing experimental trials on board the International Space Station (ISS) for more than a year. R2 will soon be upgraded with two climbing appendages, or legs, as well as a new integrated model-based control system. This control system satisfies two important requirements; first, that the robot can allow humans to enter its workspace during operation and second, that the robot can move its large inertia with enough precision to attach to handrails and seat track while climbing around the ISS. This is achieved by a novel control architecture that features an embedded impedance control law on the motor drivers called Multi-Loop control which is tightly interfaced with a kinematic and dynamic coordinated control system nicknamed RoboDyn that resides on centralized processors. This paper presents the integrated control algorithm as well as several test results that illustrate R2's safety features and performance

    Colony formation in Phaeocystis antarctica : connecting molecular mechanisms with iron biogeochemistry

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 4923-4942, doi:10.5194/bg-15-4923-2018.Phaeocystis antarctica is an important phytoplankter of the Ross Sea where it dominates the early season bloom after sea ice retreat and is a major contributor to carbon export. The factors that influence Phaeocystis colony formation and the resultant Ross Sea bloom initiation have been of great scientific interest, yet there is little known about the underlying mechanisms responsible for these phenomena. Here, we present laboratory and field studies on Phaeocystis antarctica grown under multiple iron conditions using a coupled proteomic and transcriptomic approach. P. antarctica had a lower iron limitation threshold than a Ross Sea diatom Chaetoceros sp., and at increased iron nutrition (>120pM Fe') a shift from flagellate cells to a majority of colonial cells in P. antarctica was observed, implying a role for iron as a trigger for colony formation. Proteome analysis revealed an extensive and coordinated shift in proteome structure linked to iron availability and life cycle transitions with 327 and 436 proteins measured as significantly different between low and high iron in strains 1871 and 1374, respectively. The enzymes flavodoxin and plastocyanin that can functionally replace iron metalloenzymes were observed at low iron treatments consistent with cellular iron-sparing strategies, with plastocyanin having a larger dynamic range. The numerous isoforms of the putative iron-starvation-induced protein (ISIP) group (ISIP2A and ISIP3) had abundance patterns coinciding with that of either low or high iron (and coincident flagellate or the colonial cell types in strain 1871), implying that there may be specific iron acquisition systems for each life cycle type. The proteome analysis also revealed numerous structural proteins associated with each cell type: within flagellate cells actin and tubulin from flagella and haptonema structures as well as a suite of calcium-binding proteins with EF domains were observed. In the colony-dominated samples a variety of structural proteins were observed that are also often found in multicellular organisms including spondins, lectins, fibrillins, and glycoproteins with von Willebrand domains. A large number of proteins of unknown function were identified that became abundant at either high or low iron availability. These results were compared to the first metaproteomic analysis of a Ross Sea Phaeocystis bloom to connect the mechanistic information to the in situ ecology and biogeochemistry. Proteins associated with both flagellate and colonial cells were observed in the bloom sample consistent with the need for both cell types within a growing bloom. Bacterial iron storage and B12 biosynthesis proteins were also observed consistent with chemical synergies within the colony microbiome to cope with the biogeochemical conditions. Together these responses reveal a complex, highly coordinated effort by P. antarctica to regulate its phenotype at the molecular level in response to iron and provide a window into the biology, ecology, and biogeochemistry of this group.Support for this study was provided by an Investigator grant to Mak A. Saito from the Gordon and Betty Moore Foundation (GBMF3782), National Science Foundation grants NSF-PLR 0732665, OCE-1435056, OCE-1220484, and ANT-1643684, the WHOI Coastal Ocean Institute, and a CINAR Postdoctoral Scholar Fellowship provided to Sara J. Bender through the Woods Hole Oceanographic Institution. Support was provided to Andrew E. Allen through NSF awards ANT-0732822, ANT-1043671, and OCE-1136477 and Gordon and Betty Moore Foundation grant GBMF3828. Additional support was provided to GRD through NSF award OPP-0338097

    The Community Land Model version 5 : description of new features, benchmarking, and impact of forcing uncertainty

    Get PDF
    The Community Land Model (CLM) is the land component of the Community Earth System Model (CESM) and is used in several global and regional modeling systems. In this paper, we introduce model developments included in CLM version 5 (CLM5), which is the default land component for CESM2. We assess an ensemble of simulations, including prescribed and prognostic vegetation state, multiple forcing data sets, and CLM4, CLM4.5, and CLM5, against a range of metrics including from the International Land Model Benchmarking (ILAMBv2) package. CLM5 includes new and updated processes and parameterizations: (1) dynamic land units, (2) updated parameterizations and structure for hydrology and snow (spatially explicit soil depth, dry surface layer, revised groundwater scheme, revised canopy interception and canopy snow processes, updated fresh snow density, simple firn model, and Model for Scale Adaptive River Transport), (3) plant hydraulics and hydraulic redistribution, (4) revised nitrogen cycling (flexible leaf stoichiometry, leaf N optimization for photosynthesis, and carbon costs for plant nitrogen uptake), (5) global crop model with six crop types and time‐evolving irrigated areas and fertilization rates, (6) updated urban building energy, (7) carbon isotopes, and (8) updated stomatal physiology. New optional features include demographically structured dynamic vegetation model (Functionally Assembled Terrestrial Ecosystem Simulator), ozone damage to plants, and fire trace gas emissions coupling to the atmosphere. Conclusive establishment of improvement or degradation of individual variables or metrics is challenged by forcing uncertainty, parametric uncertainty, and model structural complexity, but the multivariate metrics presented here suggest a general broad improvement from CLM4 to CLM5

    Identifying strategies to maximise recruitment and retention of practices and patients in a multicentre randomised controlled trial of an intervention to optimise secondary prevention for coronary heart disease in primary care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recruitment and retention of patients and healthcare providers in randomised controlled trials (RCTs) is important in order to determine the effectiveness of interventions. However, failure to achieve recruitment targets is common and reasons why a particular recruitment strategy works for one study and not another remain unclear. We sought to describe a strategy used in a multicentre RCT in primary care, to report researchers' and participants' experiences of its implementation and to inform future strategies to maximise recruitment and retention.</p> <p>Methods</p> <p>In total 48 general practices and 903 patients were recruited from three different areas of Ireland to a RCT of an intervention designed to optimise secondary prevention of coronary heart disease. The recruitment process involved telephoning practices, posting information, visiting practices, identifying potential participants, posting invitations and obtaining consent. Retention involved patients attending reviews and responding to questionnaires and practices facilitating data collection.</p> <p>Results</p> <p>We achieved high retention rates for practices (100%) and for patients (85%) over an 18-month intervention period. Pilot work, knowledge of the setting, awareness of change in staff and organisation amongst participant sites, rapid responses to queries and acknowledgement of practitioners' contributions were identified as being important. Minor variations in protocol and research support helped to meet varied, complex and changing individual needs of practitioners and patients and encouraged retention in the trial. A collaborative relationship between researcher and practice staff which required time to develop was perceived as vital for both recruitment and retention.</p> <p>Conclusion</p> <p>Recruiting and retaining the numbers of practices and patients estimated as required to provide findings with adequate power contributes to increased confidence in the validity and generalisability of RCT results. A continuous dynamic process of monitoring progress within trials and tailoring strategies to particular circumstances, whilst not compromising trial protocols, should allow maximal recruitment and retention.</p> <p>Trial registration</p> <p>ISRCTN24081411</p

    Appraisal of literature reviews on end-of-life care for minority ethnic groups in the UK and a critical comparison with policy recommendations from the UK end-of-life care strategy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evidence of low end-of-life (EoL) care service use by minority ethnic groups in the UK has given rise to a body of research and a number of reviews of the literature. This article aims to review and evaluate literature reviews on minority ethnic groups and EoL care in the UK and assess their suitability as an evidence base for policy.</p> <p>Methods</p> <p>Systematic review. Searches were carried out in thirteen electronic databases, eight journals, reference lists, and grey literature. Reviews were included if they concerned minority ethnic groups and EoL care in the UK. Reviews were graded for quality and key themes identified.</p> <p>Results</p> <p>Thirteen reviews (2001-2009) met inclusion criteria. Seven took a systematic approach, of which four scored highly for methodological quality (a mean score of six, median seven). The majority of systematic reviews were therefore of a reasonable methodological quality. Most reviews were restricted by ethnic group, aspect of EoL care, or were broader reviews which reported relevant findings. Six key themes were identified.</p> <p>Conclusions</p> <p>A number of reviews were systematic and scored highly for methodological quality. These reviews provide a good reflection of the primary evidence and could be used to inform policy. The complexity and inter-relatedness of factors leading to low service use was recognised and reflected in reviews' recommendations for service improvement. Recommendations made in the UK End-of-Life Care Strategy were limited in comparison, and the Strategy's evidence base concerning minority ethnic groups was found to be narrow. Future policy should be embedded strongly in the evidence base to reflect the current literature and minimise bias.</p

    Bacterial RuBisCO Is Required for Efficient Bradyrhizobium/Aeschynomene Symbiosis

    Get PDF
    Rhizobia and legume plants establish symbiotic associations resulting in the formation of organs specialized in nitrogen fixation. In such organs, termed nodules, bacteria differentiate into bacteroids which convert atmospheric nitrogen and supply the plant with organic nitrogen. As a counterpart, bacteroids receive carbon substrates from the plant. This rather simple model of metabolite exchange underlies symbiosis but does not describe the complexity of bacteroids' central metabolism. A previous study using the tropical symbiotic model Aeschynomene indica/photosynthetic Bradyrhizobium sp. ORS278 suggested a role of the bacterial Calvin cycle during the symbiotic process. Herein we investigated the role of two RuBisCO gene clusters of Bradyrhizobium sp. ORS278 during symbiosis. Using gene reporter fusion strains, we showed that cbbL1 but not the paralogous cbbL2 is expressed during symbiosis. Congruently, CbbL1 was detected in bacteroids by proteome analysis. The importance of CbbL1 for symbiotic nitrogen fixation was proven by a reverse genetic approach. Interestingly, despite its symbiotic nitrogen fixation defect, the cbbL1 mutant was not affected in nitrogen fixation activity under free living state. This study demonstrates a critical role for bacterial RuBisCO during a rhizobia/legume symbiotic interaction

    Three principles for the progress of immersive technologies in healthcare training and education

    Get PDF

    Electrical impedance along connective tissue planes associated with acupuncture meridians

    Get PDF
    BACKGROUND: Acupuncture points and meridians are commonly believed to possess unique electrical properties. The experimental support for this claim is limited given the technical and methodological shortcomings of prior studies. Recent studies indicate a correspondence between acupuncture meridians and connective tissue planes. We hypothesized that segments of acupuncture meridians that are associated with loose connective tissue planes (between muscles or between muscle and bone) visible by ultrasound have greater electrical conductance (less electrical impedance) than non-meridian, parallel control segments. METHODS: We used a four-electrode method to measure the electrical impedance along segments of the Pericardium and Spleen meridians and corresponding parallel control segments in 23 human subjects. Meridian segments were determined by palpation and proportional measurements. Connective tissue planes underlying those segments were imaged with an ultrasound scanner. Along each meridian segment, four gold-plated needles were inserted along a straight line and used as electrodes. A parallel series of four control needles were placed 0.8 cm medial to the meridian needles. For each set of four needles, a 3.3 kHz alternating (AC) constant amplitude current was introduced at three different amplitudes (20, 40, and 80 μAmps) to the outer two needles, while the voltage was measured between the inner two needles. Tissue impedance between the two inner needles was calculated based on Ohm's law (ratio of voltage to current intensity). RESULTS: At the Pericardium location, mean tissue impedance was significantly lower at meridian segments (70.4 ± 5.7 Ω) compared with control segments (75.0 ± 5.9 Ω) (p = 0.0003). At the Spleen location, mean impedance for meridian (67.8 ± 6.8 Ω) and control segments (68.5 ± 7.5 Ω) were not significantly different (p = 0.70). CONCLUSION: Tissue impedance was on average lower along the Pericardium meridian, but not along the Spleen meridian, compared with their respective controls. Ultrasound imaging of meridian and control segments suggested that contact of the needle with connective tissue may explain the decrease in electrical impedance noted at the Pericardium meridian. Further studies are needed to determine whether tissue impedance is lower in (1) connective tissue in general compared with muscle and (2) meridian-associated vs. non meridian-associated connective tissue

    Macronuclear Genome Sequence of the Ciliate Tetrahymena thermophila, a Model Eukaryote

    Get PDF
    The ciliate Tetrahymena thermophila is a model organism for molecular and cellular biology. Like other ciliates, this species has separate germline and soma functions that are embodied by distinct nuclei within a single cell. The germline-like micronucleus (MIC) has its genome held in reserve for sexual reproduction. The soma-like macronucleus (MAC), which possesses a genome processed from that of the MIC, is the center of gene expression and does not directly contribute DNA to sexual progeny. We report here the shotgun sequencing, assembly, and analysis of the MAC genome of T. thermophila, which is approximately 104 Mb in length and composed of approximately 225 chromosomes. Overall, the gene set is robust, with more than 27,000 predicted protein-coding genes, 15,000 of which have strong matches to genes in other organisms. The functional diversity encoded by these genes is substantial and reflects the complexity of processes required for a free-living, predatory, single-celled organism. This is highlighted by the abundance of lineage-specific duplications of genes with predicted roles in sensing and responding to environmental conditions (e.g., kinases), using diverse resources (e.g., proteases and transporters), and generating structural complexity (e.g., kinesins and dyneins). In contrast to the other lineages of alveolates (apicomplexans and dinoflagellates), no compelling evidence could be found for plastid-derived genes in the genome. UGA, the only T. thermophila stop codon, is used in some genes to encode selenocysteine, thus making this organism the first known with the potential to translate all 64 codons in nuclear genes into amino acids. We present genomic evidence supporting the hypothesis that the excision of DNA from the MIC to generate the MAC specifically targets foreign DNA as a form of genome self-defense. The combination of the genome sequence, the functional diversity encoded therein, and the presence of some pathways missing from other model organisms makes T. thermophila an ideal model for functional genomic studies to address biological, biomedical, and biotechnological questions of fundamental importance

    Current strategies for quantification of estrogens in clinical research

    Get PDF
    Estrogens and their bioactive metabolites play key roles in regulating diverse processes in health and disease. In particular, estrogens and estrogenic metabolites have shown both protective and non-protective effects on disease pathobiology, implicating the importance of this steroid pathway in disease diagnostics and monitoring. All estrogens circulate in a wide range of concentrations, which in some patient cohorts can be extremely low. However, elevated levels of estradiol are reported in disease. For example, in pulmonary arterial hypertension (PAH) elevated levels have been reported in men and postmenopausal women. Conventional immunoassay techniques have come under scrutiny, with their selectivity, accuracy and precision coming into question. Analytical methodologies such as gas and liquid chromatography coupled to single and tandem mass spectrometric approaches (GC–MS, GC–MS/MS, LC–MS and LC–MS/MS) have been developed to quantify endogenous estrogens and in some cases their bioactive metabolites in biological fluids such as urine, serum, plasma and saliva. Liquid-liquid or solid-phase extraction approaches are favoured with derivatization remaining a necessity for detection in lower volumes of sample. The limits of quantitation of individual assays vary but are commonly in the range of 0.5–5 pg/mL for estrone and estradiol, with limits for their bioactive metabolites being higher. This review provides an overview of current approaches for measurement of unconjugated estrogens in biological matrices by MS, highlighting the advances in this field and the challenges remaining for routine use in the clinical and research environment
    corecore